--- library_name: peft license: mit base_model: EleutherAI/gpt-neo-125m tags: - axolotl - generated_from_trainer model-index: - name: 4ce2ceca-17a8-49c5-83c2-35618600ca7f results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/gpt-neo-125m bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - aa838734bbefd9c8_train_data.json ds_type: json format: custom path: /workspace/input_data/aa838734bbefd9c8_train_data.json type: field_instruction: prompt field_output: GEITje-7B-ultra format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null device_map: ? '' : 0,1,2,3,4,5,6,7 early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 100 eval_table_size: null flash_attention: false gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false hub_model_id: Alphatao/4ce2ceca-17a8-49c5-83c2-35618600ca7f hub_repo: null hub_strategy: null hub_token: null learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lora_target_modules: null lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 4140 micro_batch_size: 4 mlflow_experiment_name: /tmp/aa838734bbefd9c8_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.04 wandb_entity: null wandb_mode: online wandb_name: 0130bc26-f4a9-49f9-b382-a5b971eeaf04 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 0130bc26-f4a9-49f9-b382-a5b971eeaf04 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 4ce2ceca-17a8-49c5-83c2-35618600ca7f This model is a fine-tuned version of [EleutherAI/gpt-neo-125m](https://huggingface.co/EleutherAI/gpt-neo-125m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2814 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 3002 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 22.3516 | 0.0007 | 1 | 2.7369 | | 20.2093 | 0.0666 | 100 | 2.5747 | | 19.7446 | 0.1333 | 200 | 2.5223 | | 20.6209 | 0.1999 | 300 | 2.4892 | | 20.299 | 0.2666 | 400 | 2.4635 | | 19.2732 | 0.3332 | 500 | 2.4406 | | 19.7515 | 0.3998 | 600 | 2.4214 | | 18.9969 | 0.4665 | 700 | 2.4035 | | 19.396 | 0.5331 | 800 | 2.3888 | | 18.8607 | 0.5998 | 900 | 2.3739 | | 18.908 | 0.6664 | 1000 | 2.3621 | | 18.5906 | 0.7330 | 1100 | 2.3504 | | 18.9578 | 0.7997 | 1200 | 2.3409 | | 19.0391 | 0.8663 | 1300 | 2.3319 | | 18.6685 | 0.9329 | 1400 | 2.3235 | | 15.9064 | 0.9996 | 1500 | 2.3170 | | 16.0333 | 1.0664 | 1600 | 2.3104 | | 17.8283 | 1.1330 | 1700 | 2.3052 | | 18.3232 | 1.1997 | 1800 | 2.3006 | | 16.2907 | 1.2663 | 1900 | 2.2966 | | 20.2129 | 1.3329 | 2000 | 2.2936 | | 17.9803 | 1.3996 | 2100 | 2.2905 | | 17.2894 | 1.4662 | 2200 | 2.2879 | | 18.2833 | 1.5329 | 2300 | 2.2861 | | 16.9763 | 1.5995 | 2400 | 2.2844 | | 18.0936 | 1.6661 | 2500 | 2.2834 | | 17.6034 | 1.7328 | 2600 | 2.2823 | | 17.8223 | 1.7994 | 2700 | 2.2819 | | 18.5859 | 1.8661 | 2800 | 2.2816 | | 17.2502 | 1.9327 | 2900 | 2.2815 | | 17.3237 | 1.9993 | 3000 | 2.2814 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1