--- library_name: peft license: llama3 base_model: MLP-KTLim/llama-3-Korean-Bllossom-8B tags: - axolotl - generated_from_trainer model-index: - name: 3b6cc90b-d793-455d-83da-09c665f77685 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: MLP-KTLim/llama-3-Korean-Bllossom-8B bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 7ed7c2d8a4e67269_train_data.json ds_type: json format: custom path: /workspace/input_data/7ed7c2d8a4e67269_train_data.json type: field_input: endings field_instruction: ctx_a field_output: input_formatted format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null device_map: ? '' : 0,1,2,3,4,5,6,7 early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 100 eval_table_size: null flash_attention: true gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false hub_model_id: Alphatao/3b6cc90b-d793-455d-83da-09c665f77685 hub_repo: null hub_strategy: null hub_token: null learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj - o_proj - down_proj - up_proj lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 966 micro_batch_size: 4 mlflow_experiment_name: /tmp/7ed7c2d8a4e67269_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 sequence_len: 2048 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.04 wandb_entity: null wandb_mode: online wandb_name: a233f1a7-1015-4f7b-b9f5-49500845097f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: a233f1a7-1015-4f7b-b9f5-49500845097f warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 3b6cc90b-d793-455d-83da-09c665f77685 This model is a fine-tuned version of [MLP-KTLim/llama-3-Korean-Bllossom-8B](https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0108 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 966 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.4898 | 0.0007 | 1 | 2.4862 | | 0.0082 | 0.0682 | 100 | 0.0158 | | 0.0035 | 0.1363 | 200 | 0.0125 | | 0.0034 | 0.2045 | 300 | 0.0119 | | 0.0022 | 0.2726 | 400 | 0.0117 | | 0.0023 | 0.3408 | 500 | 0.0113 | | 0.0035 | 0.4089 | 600 | 0.0111 | | 0.0028 | 0.4771 | 700 | 0.0110 | | 0.0032 | 0.5452 | 800 | 0.0109 | | 0.0737 | 0.6134 | 900 | 0.0108 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1