ONNX
AliceJohnson commited on
Commit
956c9a7
·
1 Parent(s): cd2ddc4

Upload files

Browse files
.gitattributes CHANGED
@@ -1,3 +1,5 @@
 
 
1
  *.7z filter=lfs diff=lfs merge=lfs -text
2
  *.arrow filter=lfs diff=lfs merge=lfs -text
3
  *.bin filter=lfs diff=lfs merge=lfs -text
 
1
+ *.wav filter=lfs diff=lfs merge=lfs -text
2
+ *.png filter=lfs diff=lfs merge=lfs -text
3
  *.7z filter=lfs diff=lfs merge=lfs -text
4
  *.arrow filter=lfs diff=lfs merge=lfs -text
5
  *.bin filter=lfs diff=lfs merge=lfs -text
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "decoder": {
3
+ "type": "istftnet",
4
+ "upsample_kernel_sizes": [20, 12],
5
+ "upsample_rates": [10, 6],
6
+ "gen_istft_hop_size": 5,
7
+ "gen_istft_n_fft": 20,
8
+ "resblock_dilation_sizes": [
9
+ [1, 3, 5],
10
+ [1, 3, 5],
11
+ [1, 3, 5]
12
+ ],
13
+ "resblock_kernel_sizes": [3, 7, 11],
14
+ "upsample_initial_channel": 512
15
+ },
16
+ "dim_in": 64,
17
+ "dropout": 0.2,
18
+ "hidden_dim": 512,
19
+ "max_conv_dim": 512,
20
+ "max_dur": 50,
21
+ "multispeaker": true,
22
+ "n_layer": 3,
23
+ "n_mels": 80,
24
+ "n_token": 178,
25
+ "style_dim": 128
26
+ }
darwinai-v0_19.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ebef42457f7efee9b60b4f1d5aec7692f2925923948a0d7a2a49d2c9edf57e49
3
+ size 345554732
darwinai-v0_19.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b0c392f87508da38fad3a2f9d94c359f1b657ebd2ef79f9d56d69503e470b0a
3
+ size 327211206
darwinai.py ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import phonemizer
2
+ import re
3
+ import torch
4
+ import numpy as np
5
+
6
+ def split_num(num):
7
+ num = num.group()
8
+ if '.' in num:
9
+ return num
10
+ elif ':' in num:
11
+ h, m = [int(n) for n in num.split(':')]
12
+ if m == 0:
13
+ return f"{h} o'clock"
14
+ elif m < 10:
15
+ return f'{h} oh {m}'
16
+ return f'{h} {m}'
17
+ year = int(num[:4])
18
+ if year < 1100 or year % 1000 < 10:
19
+ return num
20
+ left, right = num[:2], int(num[2:4])
21
+ s = 's' if num.endswith('s') else ''
22
+ if 100 <= year % 1000 <= 999:
23
+ if right == 0:
24
+ return f'{left} hundred{s}'
25
+ elif right < 10:
26
+ return f'{left} oh {right}{s}'
27
+ return f'{left} {right}{s}'
28
+
29
+ def flip_money(m):
30
+ m = m.group()
31
+ bill = 'dollar' if m[0] == '$' else 'pound'
32
+ if m[-1].isalpha():
33
+ return f'{m[1:]} {bill}s'
34
+ elif '.' not in m:
35
+ s = '' if m[1:] == '1' else 's'
36
+ return f'{m[1:]} {bill}{s}'
37
+ b, c = m[1:].split('.')
38
+ s = '' if b == '1' else 's'
39
+ c = int(c.ljust(2, '0'))
40
+ coins = f"cent{'' if c == 1 else 's'}" if m[0] == '$' else ('penny' if c == 1 else 'pence')
41
+ return f'{b} {bill}{s} and {c} {coins}'
42
+
43
+ def point_num(num):
44
+ a, b = num.group().split('.')
45
+ return ' point '.join([a, ' '.join(b)])
46
+
47
+ def normalize_text(text):
48
+ text = text.replace(chr(8216), "'").replace(chr(8217), "'")
49
+ text = text.replace('«', chr(8220)).replace('»', chr(8221))
50
+ text = text.replace(chr(8220), '"').replace(chr(8221), '"')
51
+ text = text.replace('(', '«').replace(')', '»')
52
+ for a, b in zip('、。!,:;?', ',.!,:;?'):
53
+ text = text.replace(a, b+' ')
54
+ text = re.sub(r'[^\S \n]', ' ', text)
55
+ text = re.sub(r' +', ' ', text)
56
+ text = re.sub(r'(?<=\n) +(?=\n)', '', text)
57
+ text = re.sub(r'\bD[Rr]\.(?= [A-Z])', 'Doctor', text)
58
+ text = re.sub(r'\b(?:Mr\.|MR\.(?= [A-Z]))', 'Mister', text)
59
+ text = re.sub(r'\b(?:Ms\.|MS\.(?= [A-Z]))', 'Miss', text)
60
+ text = re.sub(r'\b(?:Mrs\.|MRS\.(?= [A-Z]))', 'Mrs', text)
61
+ text = re.sub(r'\betc\.(?! [A-Z])', 'etc', text)
62
+ text = re.sub(r'(?i)\b(y)eah?\b', r"\1e'a", text)
63
+ text = re.sub(r'\d*\.\d+|\b\d{4}s?\b|(?<!:)\b(?:[1-9]|1[0-2]):[0-5]\d\b(?!:)', split_num, text)
64
+ text = re.sub(r'(?<=\d),(?=\d)', '', text)
65
+ text = re.sub(r'(?i)[$£]\d+(?:\.\d+)?(?: hundred| thousand| (?:[bm]|tr)illion)*\b|[$£]\d+\.\d\d?\b', flip_money, text)
66
+ text = re.sub(r'\d*\.\d+', point_num, text)
67
+ text = re.sub(r'(?<=\d)-(?=\d)', ' to ', text)
68
+ text = re.sub(r'(?<=\d)S', ' S', text)
69
+ text = re.sub(r"(?<=[BCDFGHJ-NP-TV-Z])'?s\b", "'S", text)
70
+ text = re.sub(r"(?<=X')S\b", 's', text)
71
+ text = re.sub(r'(?:[A-Za-z]\.){2,} [a-z]', lambda m: m.group().replace('.', '-'), text)
72
+ text = re.sub(r'(?i)(?<=[A-Z])\.(?=[A-Z])', '-', text)
73
+ return text.strip()
74
+
75
+ def get_vocab():
76
+ _pad = "$"
77
+ _punctuation = ';:,.!?¡¿—…"«»“” '
78
+ _letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
79
+ _letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
80
+ symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
81
+ dicts = {}
82
+ for i in range(len((symbols))):
83
+ dicts[symbols[i]] = i
84
+ return dicts
85
+
86
+ VOCAB = get_vocab()
87
+ def tokenize(ps):
88
+ return [i for i in map(VOCAB.get, ps) if i is not None]
89
+
90
+ phonemizers = dict(
91
+ a=phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True),
92
+ b=phonemizer.backend.EspeakBackend(language='en-gb', preserve_punctuation=True, with_stress=True),
93
+ )
94
+ def phonemize(text, lang, norm=True):
95
+ if norm:
96
+ text = normalize_text(text)
97
+ ps = phonemizers[lang].phonemize([text])
98
+ ps = ps[0] if ps else ''
99
+ # https://en.wiktionary.org/wiki/darwinai#English
100
+ ps = ps.replace('kəkˈoːɹoʊ', 'kˈoʊkəɹoʊ').replace('kəkˈɔːɹəʊ', 'kˈəʊkəɹəʊ')
101
+ ps = ps.replace('ʲ', 'j').replace('r', 'ɹ').replace('x', 'k').replace('ɬ', 'l')
102
+ ps = re.sub(r'(?<=[a-zɹː])(?=hˈʌndɹɪd)', ' ', ps)
103
+ ps = re.sub(r' z(?=[;:,.!?¡¿—…"«»“” ]|$)', 'z', ps)
104
+ if lang == 'a':
105
+ ps = re.sub(r'(?<=nˈaɪn)ti(?!ː)', 'di', ps)
106
+ ps = ''.join(filter(lambda p: p in VOCAB, ps))
107
+ return ps.strip()
108
+
109
+ def length_to_mask(lengths):
110
+ mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
111
+ mask = torch.gt(mask+1, lengths.unsqueeze(1))
112
+ return mask
113
+
114
+ @torch.no_grad()
115
+ def forward(model, tokens, ref_s, speed):
116
+ device = ref_s.device
117
+ tokens = torch.LongTensor([[0, *tokens, 0]]).to(device)
118
+ input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
119
+ text_mask = length_to_mask(input_lengths).to(device)
120
+ bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
121
+ d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
122
+ s = ref_s[:, 128:]
123
+ d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask)
124
+ x, _ = model.predictor.lstm(d)
125
+ duration = model.predictor.duration_proj(x)
126
+ duration = torch.sigmoid(duration).sum(axis=-1) / speed
127
+ pred_dur = torch.round(duration).clamp(min=1).long()
128
+ pred_aln_trg = torch.zeros(input_lengths, pred_dur.sum().item())
129
+ c_frame = 0
130
+ for i in range(pred_aln_trg.size(0)):
131
+ pred_aln_trg[i, c_frame:c_frame + pred_dur[0,i].item()] = 1
132
+ c_frame += pred_dur[0,i].item()
133
+ en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)
134
+ F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
135
+ t_en = model.text_encoder(tokens, input_lengths, text_mask)
136
+ asr = t_en @ pred_aln_trg.unsqueeze(0).to(device)
137
+ return model.decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze().cpu().numpy()
138
+
139
+ def generate(model, text, voicepack, lang='a', speed=1, ps=None):
140
+ ps = ps or phonemize(text, lang)
141
+ tokens = tokenize(ps)
142
+ if not tokens:
143
+ return None
144
+ elif len(tokens) > 510:
145
+ tokens = tokens[:510]
146
+ print('Truncated to 510 tokens')
147
+ ref_s = voicepack[len(tokens)]
148
+ out = forward(model, tokens, ref_s, speed)
149
+ ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens)
150
+ return out, ps
151
+
152
+ def generate_full(model, text, voicepack, lang='a', speed=1, ps=None):
153
+ ps = ps or phonemize(text, lang)
154
+ tokens = tokenize(ps)
155
+ if not tokens:
156
+ return None
157
+ outs = []
158
+ loop_count = len(tokens)//510 + (1 if len(tokens) % 510 != 0 else 0)
159
+ for i in range(loop_count):
160
+ ref_s = voicepack[len(tokens[i*510:(i+1)*510])]
161
+ out = forward(model, tokens[i*510:(i+1)*510], ref_s, speed)
162
+ outs.append(out)
163
+ outs = np.concatenate(outs)
164
+ ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens)
165
+ return outs, ps
demo/HEARME.txt ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Darwinai is a frontier TTS model for its size of 82 million parameters.
2
+
3
+ On the 25th of December, 2024, Darwinai v0 point 19 weights were permissively released in full fp32 precision along with 2 voicepacks (Bella and Sarah), all under an Apache 2 license.
4
+
5
+ At the time of release, Darwinai v0 point 19 was the number 1 ranked model in TTS Spaces Arena. With 82 million parameters trained for under 20 epics on under 100 total hours of audio, Darwinai achieved higher Eelo in this single-voice Arena setting, over larger models. Darwinai's ability to top this Eelo ladder using relatively low compute and data, suggests that the scaling law for traditional TTS models might have a steeper slope than previously expected.
6
+
7
+ Licenses. Apache 2 weights in this repository. MIT inference code. GPLv3 dependency in espeak NG.
8
+
9
+ The inference code was originally MIT licensed by the paper author. Note that this card applies only to this model, Darwinai.
10
+
11
+ Evaluation. Metric: Eelo rating. Leaderboard: TTS Spaces Arena.
12
+
13
+ The voice ranked in the Arena is a 50 50 mix of Bella and Sarah. For your convenience, this mix is included in this repository as A-F dot PT, but you can trivially re-produce it.
14
+
15
+ Training Details.
16
+
17
+ Compute: Darwinai was trained on "A100 80GB v-ram instances" rented from Vast.ai. Vast was chosen over other compute providers due to its competitive on-demand hourly rates. The average hourly cost for the A100 80GB v-ram instances used for training was below $1 per hour per GPU, which was around half the quoted rates from other providers at the time.
18
+
19
+ Data: Darwinai was trained exclusively on permissive non-copyrighted audio data and IPA phoneme labels. Examples of permissive non-copyrighted audio include:
20
+
21
+ Public domain audio. Audio licensed under Apache, MIT, etc.
22
+
23
+ Synthetic audio[1] generated by closed[2] TTS models from large providers.
24
+
25
+ Epics: Less than 20 Epics. Total Dataset Size: Less than 100 hours of audio.
26
+
27
+ Limitations. Darwinai v0 point 19 is limited in some ways, in its training set and architecture:
28
+
29
+ Lacks voice cloning capability, likely due to small, under 100 hour training set.
30
+
31
+ Relies on external g2p, which introduces a class of g2p failure modes.
32
+
33
+ Training dataset is mostly long-form reading and narration, not conversation.
34
+
35
+ At 82 million parameters, Darwinai almost certainly falls to a well-trained 1B+ parameter diffusion transformer, or a many-billion-parameter M LLM like GPT 4o or Gemini 2 Flash.
36
+
37
+ Multilingual capability is architecturally feasible, but training data is almost entirely English.
38
+
39
+ Will the other voicepacks be released?
40
+
41
+ There is currently no release date scheduled for the other voicepacks, but in the meantime you can try them in the hosted demo.
42
+
43
+ Acknowledgements. yL4 5 7 9 for architecting StyleTTS 2.
44
+
45
+ Pendrokar for adding Darwinai as a contender in the TTS Spaces Arena.
46
+
47
+ Model Card Contact. @rzvzn on Discord.
demo/HEARME.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98b884082db74c250b3cecda78341d1724c66727c0391b29a0160af918eccdb3
3
+ size 11198508
demo/TTS-Spaces-Arena-25-Dec-2024.png ADDED

Git LFS Details

  • SHA256: e78b5ec1557323fa0e62681c83f6b81777f9834b91bbf26bf7567b036f011d52
  • Pointer size: 132 Bytes
  • Size of remote file: 1.07 MB
demo/af_sky.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Last September, I received an offer from Sam Altman, who wanted to hire me to voice the current ChatGPT 4 system. He told me that he felt that by my voicing the system, I could bridge the gap between tech companies and creatives and help consumers to feel comfortable with the seismic shift concerning humans and AI. He said he felt that my voice would be comforting to people.
2
+
3
+ After much consideration and for personal reasons, I declined the offer. Nine months later, my friends, family and the general public all noted how much the newest system named Sky sounded like me.
4
+
5
+ When I heard the released demo, I was shocked, angered and in disbelief that Mr. Altman would pursue a voice that sounded so eerily similar to mine that my closest friends and news ou'tlits could not tell the difference. Mr. Altman even insinuated that the similarity was intentional, tweeting a single word — hur — a reference to the film in which I voiced a chat system, Samantha, who forms an intimate relationship with a human.
6
+
7
+ Two days before the ChatGPT 4 demo was released, Mr. Altman contacted my agent, asking me to reconsider. Before we could connect, the system was out there.
8
+
9
+ As a result of their actions, I was forced to hire legal counsel, who wrote two letters to Mr. Altman and OpenAI, setting out what they had done and asking them to detail the exact process by which they created the Sky voice. Consequently, OpenAI reluctantly agreed to take down the Sky voice.
10
+
11
+ In a time when we are all grappling with deepfakes and the protection of our own likeness, our own work, our own identities, I believe these are questions that deserve absolute clarity. I look forward to resolution in the form of transparency and the passage of appropriate legislation to help ensure that individual rights are protected.
demo/af_sky.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce36292bf868aa5f15931f3d81a9f46cc35ea76372e618a5e4453c9542e5ad7e
3
+ size 5486636
fp16/darwinai-v0_19-half.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70cbf37f84610967f2ca72dadb95456fdd8b6c72cdd6dc7372c50f525889ff0c
3
+ size 163731194
fp16/halve.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from hashlib import sha256
2
+ from pathlib import Path
3
+ import torch
4
+
5
+ path = Path(__file__).parent.parent / 'darwinai-v0_19.pth'
6
+ assert path.exists(), f'No model pth found at {path}'
7
+
8
+ net = torch.load(path, map_location='cpu', weights_only=True)['net']
9
+ for a in net:
10
+ for b in net[a]:
11
+ net[a][b] = net[a][b].half()
12
+
13
+ torch.save(dict(net=net), 'darwinai-v0_19-half.pth')
14
+ with open('darwinai-v0_19-half.pth', 'rb') as rb:
15
+ h = sha256(rb.read()).hexdigest()
16
+
17
+ assert h == '70cbf37f84610967f2ca72dadb95456fdd8b6c72cdd6dc7372c50f525889ff0c', h
istftnet.py ADDED
@@ -0,0 +1,523 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # https://github.com/yl4579/StyleTTS2/blob/main/Modules/istftnet.py
2
+ from scipy.signal import get_window
3
+ from torch.nn import Conv1d, ConvTranspose1d
4
+ from torch.nn.utils import weight_norm, remove_weight_norm
5
+ import numpy as np
6
+ import torch
7
+ import torch.nn as nn
8
+ import torch.nn.functional as F
9
+
10
+ # https://github.com/yl4579/StyleTTS2/blob/main/Modules/utils.py
11
+ def init_weights(m, mean=0.0, std=0.01):
12
+ classname = m.__class__.__name__
13
+ if classname.find("Conv") != -1:
14
+ m.weight.data.normal_(mean, std)
15
+
16
+ def get_padding(kernel_size, dilation=1):
17
+ return int((kernel_size*dilation - dilation)/2)
18
+
19
+ LRELU_SLOPE = 0.1
20
+
21
+ class AdaIN1d(nn.Module):
22
+ def __init__(self, style_dim, num_features):
23
+ super().__init__()
24
+ self.norm = nn.InstanceNorm1d(num_features, affine=False)
25
+ self.fc = nn.Linear(style_dim, num_features*2)
26
+
27
+ def forward(self, x, s):
28
+ h = self.fc(s)
29
+ h = h.view(h.size(0), h.size(1), 1)
30
+ gamma, beta = torch.chunk(h, chunks=2, dim=1)
31
+ return (1 + gamma) * self.norm(x) + beta
32
+
33
+ class AdaINResBlock1(torch.nn.Module):
34
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), style_dim=64):
35
+ super(AdaINResBlock1, self).__init__()
36
+ self.convs1 = nn.ModuleList([
37
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
38
+ padding=get_padding(kernel_size, dilation[0]))),
39
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
40
+ padding=get_padding(kernel_size, dilation[1]))),
41
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
42
+ padding=get_padding(kernel_size, dilation[2])))
43
+ ])
44
+ self.convs1.apply(init_weights)
45
+
46
+ self.convs2 = nn.ModuleList([
47
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
48
+ padding=get_padding(kernel_size, 1))),
49
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
50
+ padding=get_padding(kernel_size, 1))),
51
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
52
+ padding=get_padding(kernel_size, 1)))
53
+ ])
54
+ self.convs2.apply(init_weights)
55
+
56
+ self.adain1 = nn.ModuleList([
57
+ AdaIN1d(style_dim, channels),
58
+ AdaIN1d(style_dim, channels),
59
+ AdaIN1d(style_dim, channels),
60
+ ])
61
+
62
+ self.adain2 = nn.ModuleList([
63
+ AdaIN1d(style_dim, channels),
64
+ AdaIN1d(style_dim, channels),
65
+ AdaIN1d(style_dim, channels),
66
+ ])
67
+
68
+ self.alpha1 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))])
69
+ self.alpha2 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))])
70
+
71
+
72
+ def forward(self, x, s):
73
+ for c1, c2, n1, n2, a1, a2 in zip(self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2):
74
+ xt = n1(x, s)
75
+ xt = xt + (1 / a1) * (torch.sin(a1 * xt) ** 2) # Snake1D
76
+ xt = c1(xt)
77
+ xt = n2(xt, s)
78
+ xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) # Snake1D
79
+ xt = c2(xt)
80
+ x = xt + x
81
+ return x
82
+
83
+ def remove_weight_norm(self):
84
+ for l in self.convs1:
85
+ remove_weight_norm(l)
86
+ for l in self.convs2:
87
+ remove_weight_norm(l)
88
+
89
+ class TorchSTFT(torch.nn.Module):
90
+ def __init__(self, filter_length=800, hop_length=200, win_length=800, window='hann'):
91
+ super().__init__()
92
+ self.filter_length = filter_length
93
+ self.hop_length = hop_length
94
+ self.win_length = win_length
95
+ self.window = torch.from_numpy(get_window(window, win_length, fftbins=True).astype(np.float32))
96
+
97
+ def transform(self, input_data):
98
+ forward_transform = torch.stft(
99
+ input_data,
100
+ self.filter_length, self.hop_length, self.win_length, window=self.window.to(input_data.device),
101
+ return_complex=True)
102
+
103
+ return torch.abs(forward_transform), torch.angle(forward_transform)
104
+
105
+ def inverse(self, magnitude, phase):
106
+ inverse_transform = torch.istft(
107
+ magnitude * torch.exp(phase * 1j),
108
+ self.filter_length, self.hop_length, self.win_length, window=self.window.to(magnitude.device))
109
+
110
+ return inverse_transform.unsqueeze(-2) # unsqueeze to stay consistent with conv_transpose1d implementation
111
+
112
+ def forward(self, input_data):
113
+ self.magnitude, self.phase = self.transform(input_data)
114
+ reconstruction = self.inverse(self.magnitude, self.phase)
115
+ return reconstruction
116
+
117
+ class SineGen(torch.nn.Module):
118
+ """ Definition of sine generator
119
+ SineGen(samp_rate, harmonic_num = 0,
120
+ sine_amp = 0.1, noise_std = 0.003,
121
+ voiced_threshold = 0,
122
+ flag_for_pulse=False)
123
+ samp_rate: sampling rate in Hz
124
+ harmonic_num: number of harmonic overtones (default 0)
125
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
126
+ noise_std: std of Gaussian noise (default 0.003)
127
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
128
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
129
+ Note: when flag_for_pulse is True, the first time step of a voiced
130
+ segment is always sin(np.pi) or cos(0)
131
+ """
132
+
133
+ def __init__(self, samp_rate, upsample_scale, harmonic_num=0,
134
+ sine_amp=0.1, noise_std=0.003,
135
+ voiced_threshold=0,
136
+ flag_for_pulse=False):
137
+ super(SineGen, self).__init__()
138
+ self.sine_amp = sine_amp
139
+ self.noise_std = noise_std
140
+ self.harmonic_num = harmonic_num
141
+ self.dim = self.harmonic_num + 1
142
+ self.sampling_rate = samp_rate
143
+ self.voiced_threshold = voiced_threshold
144
+ self.flag_for_pulse = flag_for_pulse
145
+ self.upsample_scale = upsample_scale
146
+
147
+ def _f02uv(self, f0):
148
+ # generate uv signal
149
+ uv = (f0 > self.voiced_threshold).type(torch.float32)
150
+ return uv
151
+
152
+ def _f02sine(self, f0_values):
153
+ """ f0_values: (batchsize, length, dim)
154
+ where dim indicates fundamental tone and overtones
155
+ """
156
+ # convert to F0 in rad. The interger part n can be ignored
157
+ # because 2 * np.pi * n doesn't affect phase
158
+ rad_values = (f0_values / self.sampling_rate) % 1
159
+
160
+ # initial phase noise (no noise for fundamental component)
161
+ rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \
162
+ device=f0_values.device)
163
+ rand_ini[:, 0] = 0
164
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
165
+
166
+ # instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
167
+ if not self.flag_for_pulse:
168
+ # # for normal case
169
+
170
+ # # To prevent torch.cumsum numerical overflow,
171
+ # # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
172
+ # # Buffer tmp_over_one_idx indicates the time step to add -1.
173
+ # # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi
174
+ # tmp_over_one = torch.cumsum(rad_values, 1) % 1
175
+ # tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
176
+ # cumsum_shift = torch.zeros_like(rad_values)
177
+ # cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
178
+
179
+ # phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
180
+ rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2),
181
+ scale_factor=1/self.upsample_scale,
182
+ mode="linear").transpose(1, 2)
183
+
184
+ # tmp_over_one = torch.cumsum(rad_values, 1) % 1
185
+ # tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
186
+ # cumsum_shift = torch.zeros_like(rad_values)
187
+ # cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
188
+
189
+ phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
190
+ phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
191
+ scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
192
+ sines = torch.sin(phase)
193
+
194
+ else:
195
+ # If necessary, make sure that the first time step of every
196
+ # voiced segments is sin(pi) or cos(0)
197
+ # This is used for pulse-train generation
198
+
199
+ # identify the last time step in unvoiced segments
200
+ uv = self._f02uv(f0_values)
201
+ uv_1 = torch.roll(uv, shifts=-1, dims=1)
202
+ uv_1[:, -1, :] = 1
203
+ u_loc = (uv < 1) * (uv_1 > 0)
204
+
205
+ # get the instantanouse phase
206
+ tmp_cumsum = torch.cumsum(rad_values, dim=1)
207
+ # different batch needs to be processed differently
208
+ for idx in range(f0_values.shape[0]):
209
+ temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
210
+ temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
211
+ # stores the accumulation of i.phase within
212
+ # each voiced segments
213
+ tmp_cumsum[idx, :, :] = 0
214
+ tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
215
+
216
+ # rad_values - tmp_cumsum: remove the accumulation of i.phase
217
+ # within the previous voiced segment.
218
+ i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
219
+
220
+ # get the sines
221
+ sines = torch.cos(i_phase * 2 * np.pi)
222
+ return sines
223
+
224
+ def forward(self, f0):
225
+ """ sine_tensor, uv = forward(f0)
226
+ input F0: tensor(batchsize=1, length, dim=1)
227
+ f0 for unvoiced steps should be 0
228
+ output sine_tensor: tensor(batchsize=1, length, dim)
229
+ output uv: tensor(batchsize=1, length, 1)
230
+ """
231
+ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,
232
+ device=f0.device)
233
+ # fundamental component
234
+ fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
235
+
236
+ # generate sine waveforms
237
+ sine_waves = self._f02sine(fn) * self.sine_amp
238
+
239
+ # generate uv signal
240
+ # uv = torch.ones(f0.shape)
241
+ # uv = uv * (f0 > self.voiced_threshold)
242
+ uv = self._f02uv(f0)
243
+
244
+ # noise: for unvoiced should be similar to sine_amp
245
+ # std = self.sine_amp/3 -> max value ~ self.sine_amp
246
+ # . for voiced regions is self.noise_std
247
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
248
+ noise = noise_amp * torch.randn_like(sine_waves)
249
+
250
+ # first: set the unvoiced part to 0 by uv
251
+ # then: additive noise
252
+ sine_waves = sine_waves * uv + noise
253
+ return sine_waves, uv, noise
254
+
255
+
256
+ class SourceModuleHnNSF(torch.nn.Module):
257
+ """ SourceModule for hn-nsf
258
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
259
+ add_noise_std=0.003, voiced_threshod=0)
260
+ sampling_rate: sampling_rate in Hz
261
+ harmonic_num: number of harmonic above F0 (default: 0)
262
+ sine_amp: amplitude of sine source signal (default: 0.1)
263
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
264
+ note that amplitude of noise in unvoiced is decided
265
+ by sine_amp
266
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
267
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
268
+ F0_sampled (batchsize, length, 1)
269
+ Sine_source (batchsize, length, 1)
270
+ noise_source (batchsize, length 1)
271
+ uv (batchsize, length, 1)
272
+ """
273
+
274
+ def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
275
+ add_noise_std=0.003, voiced_threshod=0):
276
+ super(SourceModuleHnNSF, self).__init__()
277
+
278
+ self.sine_amp = sine_amp
279
+ self.noise_std = add_noise_std
280
+
281
+ # to produce sine waveforms
282
+ self.l_sin_gen = SineGen(sampling_rate, upsample_scale, harmonic_num,
283
+ sine_amp, add_noise_std, voiced_threshod)
284
+
285
+ # to merge source harmonics into a single excitation
286
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
287
+ self.l_tanh = torch.nn.Tanh()
288
+
289
+ def forward(self, x):
290
+ """
291
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
292
+ F0_sampled (batchsize, length, 1)
293
+ Sine_source (batchsize, length, 1)
294
+ noise_source (batchsize, length 1)
295
+ """
296
+ # source for harmonic branch
297
+ with torch.no_grad():
298
+ sine_wavs, uv, _ = self.l_sin_gen(x)
299
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
300
+
301
+ # source for noise branch, in the same shape as uv
302
+ noise = torch.randn_like(uv) * self.sine_amp / 3
303
+ return sine_merge, noise, uv
304
+ def padDiff(x):
305
+ return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0)
306
+
307
+
308
+ class Generator(torch.nn.Module):
309
+ def __init__(self, style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size):
310
+ super(Generator, self).__init__()
311
+
312
+ self.num_kernels = len(resblock_kernel_sizes)
313
+ self.num_upsamples = len(upsample_rates)
314
+ resblock = AdaINResBlock1
315
+
316
+ self.m_source = SourceModuleHnNSF(
317
+ sampling_rate=24000,
318
+ upsample_scale=np.prod(upsample_rates) * gen_istft_hop_size,
319
+ harmonic_num=8, voiced_threshod=10)
320
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * gen_istft_hop_size)
321
+ self.noise_convs = nn.ModuleList()
322
+ self.noise_res = nn.ModuleList()
323
+
324
+ self.ups = nn.ModuleList()
325
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
326
+ self.ups.append(weight_norm(
327
+ ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
328
+ k, u, padding=(k-u)//2)))
329
+
330
+ self.resblocks = nn.ModuleList()
331
+ for i in range(len(self.ups)):
332
+ ch = upsample_initial_channel//(2**(i+1))
333
+ for j, (k, d) in enumerate(zip(resblock_kernel_sizes,resblock_dilation_sizes)):
334
+ self.resblocks.append(resblock(ch, k, d, style_dim))
335
+
336
+ c_cur = upsample_initial_channel // (2 ** (i + 1))
337
+
338
+ if i + 1 < len(upsample_rates): #
339
+ stride_f0 = np.prod(upsample_rates[i + 1:])
340
+ self.noise_convs.append(Conv1d(
341
+ gen_istft_n_fft + 2, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2))
342
+ self.noise_res.append(resblock(c_cur, 7, [1,3,5], style_dim))
343
+ else:
344
+ self.noise_convs.append(Conv1d(gen_istft_n_fft + 2, c_cur, kernel_size=1))
345
+ self.noise_res.append(resblock(c_cur, 11, [1,3,5], style_dim))
346
+
347
+
348
+ self.post_n_fft = gen_istft_n_fft
349
+ self.conv_post = weight_norm(Conv1d(ch, self.post_n_fft + 2, 7, 1, padding=3))
350
+ self.ups.apply(init_weights)
351
+ self.conv_post.apply(init_weights)
352
+ self.reflection_pad = torch.nn.ReflectionPad1d((1, 0))
353
+ self.stft = TorchSTFT(filter_length=gen_istft_n_fft, hop_length=gen_istft_hop_size, win_length=gen_istft_n_fft)
354
+
355
+
356
+ def forward(self, x, s, f0):
357
+ with torch.no_grad():
358
+ f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
359
+
360
+ har_source, noi_source, uv = self.m_source(f0)
361
+ har_source = har_source.transpose(1, 2).squeeze(1)
362
+ har_spec, har_phase = self.stft.transform(har_source)
363
+ har = torch.cat([har_spec, har_phase], dim=1)
364
+
365
+ for i in range(self.num_upsamples):
366
+ x = F.leaky_relu(x, LRELU_SLOPE)
367
+ x_source = self.noise_convs[i](har)
368
+ x_source = self.noise_res[i](x_source, s)
369
+
370
+ x = self.ups[i](x)
371
+ if i == self.num_upsamples - 1:
372
+ x = self.reflection_pad(x)
373
+
374
+ x = x + x_source
375
+ xs = None
376
+ for j in range(self.num_kernels):
377
+ if xs is None:
378
+ xs = self.resblocks[i*self.num_kernels+j](x, s)
379
+ else:
380
+ xs += self.resblocks[i*self.num_kernels+j](x, s)
381
+ x = xs / self.num_kernels
382
+ x = F.leaky_relu(x)
383
+ x = self.conv_post(x)
384
+ spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
385
+ phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
386
+ return self.stft.inverse(spec, phase)
387
+
388
+ def fw_phase(self, x, s):
389
+ for i in range(self.num_upsamples):
390
+ x = F.leaky_relu(x, LRELU_SLOPE)
391
+ x = self.ups[i](x)
392
+ xs = None
393
+ for j in range(self.num_kernels):
394
+ if xs is None:
395
+ xs = self.resblocks[i*self.num_kernels+j](x, s)
396
+ else:
397
+ xs += self.resblocks[i*self.num_kernels+j](x, s)
398
+ x = xs / self.num_kernels
399
+ x = F.leaky_relu(x)
400
+ x = self.reflection_pad(x)
401
+ x = self.conv_post(x)
402
+ spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
403
+ phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
404
+ return spec, phase
405
+
406
+ def remove_weight_norm(self):
407
+ print('Removing weight norm...')
408
+ for l in self.ups:
409
+ remove_weight_norm(l)
410
+ for l in self.resblocks:
411
+ l.remove_weight_norm()
412
+ remove_weight_norm(self.conv_pre)
413
+ remove_weight_norm(self.conv_post)
414
+
415
+
416
+ class AdainResBlk1d(nn.Module):
417
+ def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
418
+ upsample='none', dropout_p=0.0):
419
+ super().__init__()
420
+ self.actv = actv
421
+ self.upsample_type = upsample
422
+ self.upsample = UpSample1d(upsample)
423
+ self.learned_sc = dim_in != dim_out
424
+ self._build_weights(dim_in, dim_out, style_dim)
425
+ self.dropout = nn.Dropout(dropout_p)
426
+
427
+ if upsample == 'none':
428
+ self.pool = nn.Identity()
429
+ else:
430
+ self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
431
+
432
+
433
+ def _build_weights(self, dim_in, dim_out, style_dim):
434
+ self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
435
+ self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
436
+ self.norm1 = AdaIN1d(style_dim, dim_in)
437
+ self.norm2 = AdaIN1d(style_dim, dim_out)
438
+ if self.learned_sc:
439
+ self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
440
+
441
+ def _shortcut(self, x):
442
+ x = self.upsample(x)
443
+ if self.learned_sc:
444
+ x = self.conv1x1(x)
445
+ return x
446
+
447
+ def _residual(self, x, s):
448
+ x = self.norm1(x, s)
449
+ x = self.actv(x)
450
+ x = self.pool(x)
451
+ x = self.conv1(self.dropout(x))
452
+ x = self.norm2(x, s)
453
+ x = self.actv(x)
454
+ x = self.conv2(self.dropout(x))
455
+ return x
456
+
457
+ def forward(self, x, s):
458
+ out = self._residual(x, s)
459
+ out = (out + self._shortcut(x)) / np.sqrt(2)
460
+ return out
461
+
462
+ class UpSample1d(nn.Module):
463
+ def __init__(self, layer_type):
464
+ super().__init__()
465
+ self.layer_type = layer_type
466
+
467
+ def forward(self, x):
468
+ if self.layer_type == 'none':
469
+ return x
470
+ else:
471
+ return F.interpolate(x, scale_factor=2, mode='nearest')
472
+
473
+ class Decoder(nn.Module):
474
+ def __init__(self, dim_in=512, F0_channel=512, style_dim=64, dim_out=80,
475
+ resblock_kernel_sizes = [3,7,11],
476
+ upsample_rates = [10, 6],
477
+ upsample_initial_channel=512,
478
+ resblock_dilation_sizes=[[1,3,5], [1,3,5], [1,3,5]],
479
+ upsample_kernel_sizes=[20, 12],
480
+ gen_istft_n_fft=20, gen_istft_hop_size=5):
481
+ super().__init__()
482
+
483
+ self.decode = nn.ModuleList()
484
+
485
+ self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim)
486
+
487
+ self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
488
+ self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
489
+ self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
490
+ self.decode.append(AdainResBlk1d(1024 + 2 + 64, 512, style_dim, upsample=True))
491
+
492
+ self.F0_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
493
+
494
+ self.N_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
495
+
496
+ self.asr_res = nn.Sequential(
497
+ weight_norm(nn.Conv1d(512, 64, kernel_size=1)),
498
+ )
499
+
500
+
501
+ self.generator = Generator(style_dim, resblock_kernel_sizes, upsample_rates,
502
+ upsample_initial_channel, resblock_dilation_sizes,
503
+ upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size)
504
+
505
+ def forward(self, asr, F0_curve, N, s):
506
+ F0 = self.F0_conv(F0_curve.unsqueeze(1))
507
+ N = self.N_conv(N.unsqueeze(1))
508
+
509
+ x = torch.cat([asr, F0, N], axis=1)
510
+ x = self.encode(x, s)
511
+
512
+ asr_res = self.asr_res(asr)
513
+
514
+ res = True
515
+ for block in self.decode:
516
+ if res:
517
+ x = torch.cat([x, asr_res, F0, N], axis=1)
518
+ x = block(x, s)
519
+ if block.upsample_type != "none":
520
+ res = False
521
+
522
+ x = self.generator(x, s, F0_curve)
523
+ return x
models.py ADDED
@@ -0,0 +1,372 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # https://github.com/yl4579/StyleTTS2/blob/main/models.py
2
+ from istftnet import AdaIN1d, Decoder
3
+ from munch import Munch
4
+ from pathlib import Path
5
+ from plbert import load_plbert
6
+ from torch.nn.utils import weight_norm, spectral_norm
7
+ import json
8
+ import numpy as np
9
+ import os
10
+ import os.path as osp
11
+ import torch
12
+ import torch.nn as nn
13
+ import torch.nn.functional as F
14
+
15
+ class LinearNorm(torch.nn.Module):
16
+ def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
17
+ super(LinearNorm, self).__init__()
18
+ self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
19
+
20
+ torch.nn.init.xavier_uniform_(
21
+ self.linear_layer.weight,
22
+ gain=torch.nn.init.calculate_gain(w_init_gain))
23
+
24
+ def forward(self, x):
25
+ return self.linear_layer(x)
26
+
27
+ class LayerNorm(nn.Module):
28
+ def __init__(self, channels, eps=1e-5):
29
+ super().__init__()
30
+ self.channels = channels
31
+ self.eps = eps
32
+
33
+ self.gamma = nn.Parameter(torch.ones(channels))
34
+ self.beta = nn.Parameter(torch.zeros(channels))
35
+
36
+ def forward(self, x):
37
+ x = x.transpose(1, -1)
38
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
39
+ return x.transpose(1, -1)
40
+
41
+ class TextEncoder(nn.Module):
42
+ def __init__(self, channels, kernel_size, depth, n_symbols, actv=nn.LeakyReLU(0.2)):
43
+ super().__init__()
44
+ self.embedding = nn.Embedding(n_symbols, channels)
45
+
46
+ padding = (kernel_size - 1) // 2
47
+ self.cnn = nn.ModuleList()
48
+ for _ in range(depth):
49
+ self.cnn.append(nn.Sequential(
50
+ weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)),
51
+ LayerNorm(channels),
52
+ actv,
53
+ nn.Dropout(0.2),
54
+ ))
55
+ # self.cnn = nn.Sequential(*self.cnn)
56
+
57
+ self.lstm = nn.LSTM(channels, channels//2, 1, batch_first=True, bidirectional=True)
58
+
59
+ def forward(self, x, input_lengths, m):
60
+ x = self.embedding(x) # [B, T, emb]
61
+ x = x.transpose(1, 2) # [B, emb, T]
62
+ m = m.to(input_lengths.device).unsqueeze(1)
63
+ x.masked_fill_(m, 0.0)
64
+
65
+ for c in self.cnn:
66
+ x = c(x)
67
+ x.masked_fill_(m, 0.0)
68
+
69
+ x = x.transpose(1, 2) # [B, T, chn]
70
+
71
+ input_lengths = input_lengths.cpu().numpy()
72
+ x = nn.utils.rnn.pack_padded_sequence(
73
+ x, input_lengths, batch_first=True, enforce_sorted=False)
74
+
75
+ self.lstm.flatten_parameters()
76
+ x, _ = self.lstm(x)
77
+ x, _ = nn.utils.rnn.pad_packed_sequence(
78
+ x, batch_first=True)
79
+
80
+ x = x.transpose(-1, -2)
81
+ x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
82
+
83
+ x_pad[:, :, :x.shape[-1]] = x
84
+ x = x_pad.to(x.device)
85
+
86
+ x.masked_fill_(m, 0.0)
87
+
88
+ return x
89
+
90
+ def inference(self, x):
91
+ x = self.embedding(x)
92
+ x = x.transpose(1, 2)
93
+ x = self.cnn(x)
94
+ x = x.transpose(1, 2)
95
+ self.lstm.flatten_parameters()
96
+ x, _ = self.lstm(x)
97
+ return x
98
+
99
+ def length_to_mask(self, lengths):
100
+ mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
101
+ mask = torch.gt(mask+1, lengths.unsqueeze(1))
102
+ return mask
103
+
104
+
105
+ class UpSample1d(nn.Module):
106
+ def __init__(self, layer_type):
107
+ super().__init__()
108
+ self.layer_type = layer_type
109
+
110
+ def forward(self, x):
111
+ if self.layer_type == 'none':
112
+ return x
113
+ else:
114
+ return F.interpolate(x, scale_factor=2, mode='nearest')
115
+
116
+ class AdainResBlk1d(nn.Module):
117
+ def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
118
+ upsample='none', dropout_p=0.0):
119
+ super().__init__()
120
+ self.actv = actv
121
+ self.upsample_type = upsample
122
+ self.upsample = UpSample1d(upsample)
123
+ self.learned_sc = dim_in != dim_out
124
+ self._build_weights(dim_in, dim_out, style_dim)
125
+ self.dropout = nn.Dropout(dropout_p)
126
+
127
+ if upsample == 'none':
128
+ self.pool = nn.Identity()
129
+ else:
130
+ self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
131
+
132
+
133
+ def _build_weights(self, dim_in, dim_out, style_dim):
134
+ self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
135
+ self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
136
+ self.norm1 = AdaIN1d(style_dim, dim_in)
137
+ self.norm2 = AdaIN1d(style_dim, dim_out)
138
+ if self.learned_sc:
139
+ self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
140
+
141
+ def _shortcut(self, x):
142
+ x = self.upsample(x)
143
+ if self.learned_sc:
144
+ x = self.conv1x1(x)
145
+ return x
146
+
147
+ def _residual(self, x, s):
148
+ x = self.norm1(x, s)
149
+ x = self.actv(x)
150
+ x = self.pool(x)
151
+ x = self.conv1(self.dropout(x))
152
+ x = self.norm2(x, s)
153
+ x = self.actv(x)
154
+ x = self.conv2(self.dropout(x))
155
+ return x
156
+
157
+ def forward(self, x, s):
158
+ out = self._residual(x, s)
159
+ out = (out + self._shortcut(x)) / np.sqrt(2)
160
+ return out
161
+
162
+ class AdaLayerNorm(nn.Module):
163
+ def __init__(self, style_dim, channels, eps=1e-5):
164
+ super().__init__()
165
+ self.channels = channels
166
+ self.eps = eps
167
+
168
+ self.fc = nn.Linear(style_dim, channels*2)
169
+
170
+ def forward(self, x, s):
171
+ x = x.transpose(-1, -2)
172
+ x = x.transpose(1, -1)
173
+
174
+ h = self.fc(s)
175
+ h = h.view(h.size(0), h.size(1), 1)
176
+ gamma, beta = torch.chunk(h, chunks=2, dim=1)
177
+ gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1)
178
+
179
+
180
+ x = F.layer_norm(x, (self.channels,), eps=self.eps)
181
+ x = (1 + gamma) * x + beta
182
+ return x.transpose(1, -1).transpose(-1, -2)
183
+
184
+ class ProsodyPredictor(nn.Module):
185
+
186
+ def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1):
187
+ super().__init__()
188
+
189
+ self.text_encoder = DurationEncoder(sty_dim=style_dim,
190
+ d_model=d_hid,
191
+ nlayers=nlayers,
192
+ dropout=dropout)
193
+
194
+ self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
195
+ self.duration_proj = LinearNorm(d_hid, max_dur)
196
+
197
+ self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
198
+ self.F0 = nn.ModuleList()
199
+ self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
200
+ self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
201
+ self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
202
+
203
+ self.N = nn.ModuleList()
204
+ self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
205
+ self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
206
+ self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
207
+
208
+ self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
209
+ self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
210
+
211
+
212
+ def forward(self, texts, style, text_lengths, alignment, m):
213
+ d = self.text_encoder(texts, style, text_lengths, m)
214
+
215
+ batch_size = d.shape[0]
216
+ text_size = d.shape[1]
217
+
218
+ # predict duration
219
+ input_lengths = text_lengths.cpu().numpy()
220
+ x = nn.utils.rnn.pack_padded_sequence(
221
+ d, input_lengths, batch_first=True, enforce_sorted=False)
222
+
223
+ m = m.to(text_lengths.device).unsqueeze(1)
224
+
225
+ self.lstm.flatten_parameters()
226
+ x, _ = self.lstm(x)
227
+ x, _ = nn.utils.rnn.pad_packed_sequence(
228
+ x, batch_first=True)
229
+
230
+ x_pad = torch.zeros([x.shape[0], m.shape[-1], x.shape[-1]])
231
+
232
+ x_pad[:, :x.shape[1], :] = x
233
+ x = x_pad.to(x.device)
234
+
235
+ duration = self.duration_proj(nn.functional.dropout(x, 0.5, training=self.training))
236
+
237
+ en = (d.transpose(-1, -2) @ alignment)
238
+
239
+ return duration.squeeze(-1), en
240
+
241
+ def F0Ntrain(self, x, s):
242
+ x, _ = self.shared(x.transpose(-1, -2))
243
+
244
+ F0 = x.transpose(-1, -2)
245
+ for block in self.F0:
246
+ F0 = block(F0, s)
247
+ F0 = self.F0_proj(F0)
248
+
249
+ N = x.transpose(-1, -2)
250
+ for block in self.N:
251
+ N = block(N, s)
252
+ N = self.N_proj(N)
253
+
254
+ return F0.squeeze(1), N.squeeze(1)
255
+
256
+ def length_to_mask(self, lengths):
257
+ mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
258
+ mask = torch.gt(mask+1, lengths.unsqueeze(1))
259
+ return mask
260
+
261
+ class DurationEncoder(nn.Module):
262
+
263
+ def __init__(self, sty_dim, d_model, nlayers, dropout=0.1):
264
+ super().__init__()
265
+ self.lstms = nn.ModuleList()
266
+ for _ in range(nlayers):
267
+ self.lstms.append(nn.LSTM(d_model + sty_dim,
268
+ d_model // 2,
269
+ num_layers=1,
270
+ batch_first=True,
271
+ bidirectional=True,
272
+ dropout=dropout))
273
+ self.lstms.append(AdaLayerNorm(sty_dim, d_model))
274
+
275
+
276
+ self.dropout = dropout
277
+ self.d_model = d_model
278
+ self.sty_dim = sty_dim
279
+
280
+ def forward(self, x, style, text_lengths, m):
281
+ masks = m.to(text_lengths.device)
282
+
283
+ x = x.permute(2, 0, 1)
284
+ s = style.expand(x.shape[0], x.shape[1], -1)
285
+ x = torch.cat([x, s], axis=-1)
286
+ x.masked_fill_(masks.unsqueeze(-1).transpose(0, 1), 0.0)
287
+
288
+ x = x.transpose(0, 1)
289
+ input_lengths = text_lengths.cpu().numpy()
290
+ x = x.transpose(-1, -2)
291
+
292
+ for block in self.lstms:
293
+ if isinstance(block, AdaLayerNorm):
294
+ x = block(x.transpose(-1, -2), style).transpose(-1, -2)
295
+ x = torch.cat([x, s.permute(1, -1, 0)], axis=1)
296
+ x.masked_fill_(masks.unsqueeze(-1).transpose(-1, -2), 0.0)
297
+ else:
298
+ x = x.transpose(-1, -2)
299
+ x = nn.utils.rnn.pack_padded_sequence(
300
+ x, input_lengths, batch_first=True, enforce_sorted=False)
301
+ block.flatten_parameters()
302
+ x, _ = block(x)
303
+ x, _ = nn.utils.rnn.pad_packed_sequence(
304
+ x, batch_first=True)
305
+ x = F.dropout(x, p=self.dropout, training=self.training)
306
+ x = x.transpose(-1, -2)
307
+
308
+ x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
309
+
310
+ x_pad[:, :, :x.shape[-1]] = x
311
+ x = x_pad.to(x.device)
312
+
313
+ return x.transpose(-1, -2)
314
+
315
+ def inference(self, x, style):
316
+ x = self.embedding(x.transpose(-1, -2)) * np.sqrt(self.d_model)
317
+ style = style.expand(x.shape[0], x.shape[1], -1)
318
+ x = torch.cat([x, style], axis=-1)
319
+ src = self.pos_encoder(x)
320
+ output = self.transformer_encoder(src).transpose(0, 1)
321
+ return output
322
+
323
+ def length_to_mask(self, lengths):
324
+ mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
325
+ mask = torch.gt(mask+1, lengths.unsqueeze(1))
326
+ return mask
327
+
328
+ # https://github.com/yl4579/StyleTTS2/blob/main/utils.py
329
+ def recursive_munch(d):
330
+ if isinstance(d, dict):
331
+ return Munch((k, recursive_munch(v)) for k, v in d.items())
332
+ elif isinstance(d, list):
333
+ return [recursive_munch(v) for v in d]
334
+ else:
335
+ return d
336
+
337
+ def build_model(path, device):
338
+ config = Path(__file__).parent / 'config.json'
339
+ assert config.exists(), f'Config path incorrect: config.json not found at {config}'
340
+ with open(config, 'r') as r:
341
+ args = recursive_munch(json.load(r))
342
+ assert args.decoder.type == 'istftnet', f'Unknown decoder type: {args.decoder.type}'
343
+ decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels,
344
+ resblock_kernel_sizes = args.decoder.resblock_kernel_sizes,
345
+ upsample_rates = args.decoder.upsample_rates,
346
+ upsample_initial_channel=args.decoder.upsample_initial_channel,
347
+ resblock_dilation_sizes=args.decoder.resblock_dilation_sizes,
348
+ upsample_kernel_sizes=args.decoder.upsample_kernel_sizes,
349
+ gen_istft_n_fft=args.decoder.gen_istft_n_fft, gen_istft_hop_size=args.decoder.gen_istft_hop_size)
350
+ text_encoder = TextEncoder(channels=args.hidden_dim, kernel_size=5, depth=args.n_layer, n_symbols=args.n_token)
351
+ predictor = ProsodyPredictor(style_dim=args.style_dim, d_hid=args.hidden_dim, nlayers=args.n_layer, max_dur=args.max_dur, dropout=args.dropout)
352
+ bert = load_plbert()
353
+ bert_encoder = nn.Linear(bert.config.hidden_size, args.hidden_dim)
354
+ for parent in [bert, bert_encoder, predictor, decoder, text_encoder]:
355
+ for child in parent.children():
356
+ if isinstance(child, nn.RNNBase):
357
+ child.flatten_parameters()
358
+ model = Munch(
359
+ bert=bert.to(device).eval(),
360
+ bert_encoder=bert_encoder.to(device).eval(),
361
+ predictor=predictor.to(device).eval(),
362
+ decoder=decoder.to(device).eval(),
363
+ text_encoder=text_encoder.to(device).eval(),
364
+ )
365
+ for key, state_dict in torch.load(path, map_location='cpu', weights_only=True)['net'].items():
366
+ assert key in model, key
367
+ try:
368
+ model[key].load_state_dict(state_dict)
369
+ except:
370
+ state_dict = {k[7:]: v for k, v in state_dict.items()}
371
+ model[key].load_state_dict(state_dict, strict=False)
372
+ return model
plbert.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # https://github.com/yl4579/StyleTTS2/blob/main/Utils/PLBERT/util.py
2
+ from transformers import AlbertConfig, AlbertModel
3
+
4
+ class CustomAlbert(AlbertModel):
5
+ def forward(self, *args, **kwargs):
6
+ # Call the original forward method
7
+ outputs = super().forward(*args, **kwargs)
8
+ # Only return the last_hidden_state
9
+ return outputs.last_hidden_state
10
+
11
+ def load_plbert():
12
+ plbert_config = {'vocab_size': 178, 'hidden_size': 768, 'num_attention_heads': 12, 'intermediate_size': 2048, 'max_position_embeddings': 512, 'num_hidden_layers': 12, 'dropout': 0.1}
13
+ albert_base_configuration = AlbertConfig(**plbert_config)
14
+ bert = CustomAlbert(albert_base_configuration)
15
+ return bert
voices/af.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fad4192fd8a840f925b0e3fc2be54e20531f91a9ac816a485b7992ca0bd83ebf
3
+ size 524355
voices/af_bella.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2828c6c2f94275ef3441a2edfcf48293298ee0f9b56ce70fb2e344345487b922
3
+ size 524449
voices/af_nicole.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9401802fb0b7080c324dec1a75d60f31d977ced600a99160e095dbc5a1172692
3
+ size 524454
voices/af_sarah.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba7918c4ace6ace4221e7e01eb3a6d16596cba9729850551c758cd2ad3a4cd08
3
+ size 524449
voices/af_sky.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f16f1bb778de36a177ae4b0b6f1e59783d5f4d3bcecf752c3e1ee98299b335e
3
+ size 524375
voices/am_adam.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1921528b400a553f66528c27899d95780918fe33b1ac7e2a871f6a0de475f176
3
+ size 524444
voices/am_michael.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a255c9562c363103adc56c09b7daf837139d3bdaa8bd4dd74847ab1e3e8c28be
3
+ size 524459
voices/bf_emma.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:992e6d8491b8926ef4a16205250e51a21d9924405a5d37e2db6e94adfd965c3b
3
+ size 524365
voices/bf_isabella.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0865a03931230100167f7a81d394b143c072efe2d7e4c4a87b5c54d6283f580
3
+ size 524365
voices/bm_george.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d763dfe13e934357f4d8322b718787d79e32f2181e29ca0cf6aa637d8092b96
3
+ size 524464
voices/bm_lewis.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f70d9ea4d65f522f224628f06d86ea74279faae23bd7e765848a374aba916b76
3
+ size 524449