File size: 7,831 Bytes
0119b51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import logging
from typing import Dict, Optional, List, Tuple
import os

import heapq
import json
import logging
import os
import queue
import sys
import time
from tqdm import tqdm

import torch
from collections import defaultdict
from torch.utils.data._utils.worker import ManagerWatchdog
import numpy as np
import torch.distributed as dist
from torch import nn, Tensor
import torch.nn.functional as F
from transformers import AutoModel, AutoTokenizer
from transformers.file_utils import ModelOutput

logger = logging.getLogger(__name__)


class GTEEmbeddidng(nn.Module):
    def __init__(self,
                 model_name: str = None,
                 normalized: bool = True,
                 pooling_method: str = 'cls',
                 use_fp16: bool = True,
                 device: str = None
                ):
        super().__init__()
        self.load_model(model_name)
        self.vocab_size = self.model.config.vocab_size
        self.normalized = normalized
        self.pooling_method = pooling_method
        if device:
            self.device = torch.device(device)
        else:
            if torch.cuda.is_available():
                self.device = torch.device("cuda")
            elif torch.backends.mps.is_available():
                self.device = torch.device("mps")
            elif is_torch_npu_available():
                self.device = torch.device("npu")
            else:
                self.device = torch.device("cpu")
                use_fp16 = False
        self.model.to(self.device)
        self.sparse_linear.to(self.device)
        if use_fp16:
            self.model.half()
            self.sparse_linear.half()

    def load_model(self, model_name):
        if not os.path.exists(model_name):
            cache_folder = os.getenv('HF_HUB_CACHE')
            model_name = snapshot_download(repo_id=model_name,
                                           cache_dir=cache_folder,
                                           ignore_patterns=['flax_model.msgpack', 'rust_model.ot', 'tf_model.h5'])

        self.model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
        self.sparse_linear = torch.nn.Linear(in_features=self.model.config.hidden_size, out_features=1)
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.model.eval()
        if os.path.exists(os.path.join(model_name, 'sparse_linear.pt')):
            logger.info('loading existing sparse_linear---------')
            self.load_pooler(model_dir=model_name)
        else:
            logger.warring('The parameters of  sparse linear is not found')

    def dense_embedding(self, hidden_state, mask):
        if self.pooling_method == 'cls':
            return hidden_state[:, 0]
        elif self.pooling_method == 'mean':
            s = torch.sum(hidden_state * mask.unsqueeze(-1).float(), dim=1)
            d = mask.sum(axis=1, keepdim=True).float()
            return s / d

    def sparse_embedding(self, hidden_state, input_ids, return_embedding: bool = True):
        token_weights = torch.relu(self.sparse_linear(hidden_state))
        return token_weights

    def _process_token_weights(self, token_weights: np.ndarray, input_ids: list):
        # conver to dict
        result = defaultdict(int)
        unused_tokens = set([self.tokenizer.cls_token_id, self.tokenizer.eos_token_id, self.tokenizer.pad_token_id,
                             self.tokenizer.unk_token_id])
        # token_weights = np.ceil(token_weights * 100)
        for w, idx in zip(token_weights, input_ids):
            if idx not in unused_tokens and w > 0:
                token = self.tokenizer.decode([int(idx)])
                if w > result[token]:
                    result[token] = w
        return result

    @torch.no_grad()
    def encode(self,
               texts: None,
               dimension: int = None,
               max_length: int = 8192,
               batch_size: int = 16,
               return_dense: bool = True,
               return_sparse: bool = False):
        if dimension is None:
            dimension = self.model.config.hidden_size
        if isinstance(texts, str):
            texts = [texts]
        num_texts = len(texts)
        all_dense_vecs = []
        all_token_weights = []
        for n, i in enumerate(range(0, num_texts, batch_size)):
            batch = texts[i: i + batch_size]
            resulst = self._encode(batch, dimension, max_length, batch_size, return_dense, return_sparse)
            if return_dense:
                all_dense_vecs.append(resulst['dense_embeddings'])
            if return_sparse:
                all_token_weights.extend(resulst['token_weights'])
        all_dense_vecs = torch.cat(all_dense_vecs, dim=0)
        return {
            "dense_embeddings": all_dense_vecs,
            "token_weights": all_token_weights 
        }

    @torch.no_grad()
    def _encode(self,
                texts: Dict[str, Tensor] = None,
                dimension: int = None,
                max_length: int = 1024,
                batch_size: int = 16,
                return_dense: bool = True,
                return_sparse: bool = False):

        text_input = self.tokenizer(texts, padding=True, truncation=True, return_tensors='pt', max_length=max_length)
        text_input = {k: v.to(self.model.device) for k,v in text_input.items()}
        last_hidden_state = self.model(**text_input, return_dict=True).last_hidden_state

        output = {}
        if return_dense:
            dense_vecs = self.dense_embedding(last_hidden_state, text_input['attention_mask'])
            dense_vecs = dense_vecs[:, :dimension]
            if self.normalized:
                dense_vecs = torch.nn.functional.normalize(dense_vecs, dim=-1)
            output['dense_embeddings'] = dense_vecs
        if return_sparse:
            token_weights = self.sparse_embedding(last_hidden_state, text_input['input_ids']).squeeze(-1)
            token_weights = list(map(self._process_token_weights, token_weights.detach().cpu().numpy().tolist(),
                                                    text_input['input_ids'].cpu().numpy().tolist()))
            output['token_weights'] = token_weights

        return output

    def load_pooler(self, model_dir):
        sparse_state_dict = torch.load(os.path.join(model_dir, 'sparse_linear.pt'), map_location='cpu')
        self.sparse_linear.load_state_dict(sparse_state_dict)
    
    def _compute_sparse_scores(self, embs1, embs2):
        scores = 0
        for token, weight in embs1.items():
            if token in embs2:
                scores += weight * embs2[token]
        return scores

    def compute_sparse_scores(self, embs1, embs2):
        scores = [self._compute_sparse_scores(emb1, emb2) for emb1, emb2 in zip(embs1, embs2)]
        return np.array(scores)

    def compute_dense_scores(self, embs1, embs2):
        scores = torch.sum(embs1*embs2, dim=-1).cpu().detach().numpy()
        return scores

    @torch.no_grad()
    def compute_scores(self, 
        text_pairs: List[Tuple[str, str]], 
        dimension: int = None,
        max_length: int = 1024,
        batch_size: int = 16,
        dense_weight=1.0,
        sparse_weight=0.1):
        text1_list = [text_pair[0] for text_pair in text_pairs]
        text2_list = [text_pair[1] for text_pair in text_pairs]
        embs1 = self.encode(text1_list, dimension, max_length, batch_size, return_dense=True, return_sparse=True)
        embs2 = self.encode(text2_list, dimension, max_length, batch_size, return_dense=True, return_sparse=True)
        scores = self.compute_dense_scores(embs1['dense_embeddings'], embs2['dense_embeddings']) * dense_weight + \
            self.compute_sparse_scores(embs1['token_weights'], embs2['token_weights']) * sparse_weight
        scores = scores.tolist()
        return scores