|
import ast |
|
import math |
|
import base64 |
|
from io import BytesIO |
|
|
|
import torch |
|
import decord |
|
import imageio |
|
import numpy as np |
|
from PIL import Image |
|
from decord import VideoReader, cpu |
|
from moviepy.editor import VideoFileClip |
|
from transformers import StoppingCriteria |
|
|
|
from scenedetect import open_video, SceneManager |
|
from scenedetect.detectors import ContentDetector |
|
from scenedetect.stats_manager import StatsManager |
|
|
|
from .constants import NUM_FRAMES, MAX_FRAMES, NUM_FRAMES_PER_SECOND, MMODAL_INDEX_TOKEN, IMAGE_TOKEN_INDEX |
|
|
|
|
|
def merge_scenes(cut_list, cut_scores, scene_list,num_frames,max_scene_num=4, num_frame_per_scene=8, min_frames_per_scene=30): |
|
if len(scene_list) == len(cut_list) and len(scene_list) == 0: |
|
frame_ids = np.linspace(0, num_frames-1, num_frame_per_scene, dtype=int) |
|
return [frame_ids] |
|
|
|
scene_list, cut_results = merge_scenes_not_exeed_max_scene_num(cut_list,cut_scores,scene_list, max_scene_num) |
|
|
|
prev_cut_point = 0 |
|
list_of_scene_frames = [] |
|
for (cur_cut_point, _) in cut_results: |
|
frame_ids = list(np.linspace(prev_cut_point, cur_cut_point-1, num_frame_per_scene, dtype=int)) |
|
list_of_scene_frames.append(frame_ids) |
|
prev_cut_point = cur_cut_point |
|
if cur_cut_point < num_frames: |
|
frame_ids = np.linspace(cur_cut_point, num_frames-1, num_frame_per_scene, dtype=int) |
|
list_of_scene_frames.append(frame_ids) |
|
|
|
return list_of_scene_frames |
|
|
|
|
|
def merge_scenes_not_exeed_max_scene_num(cut_list,cut_scores, scene_list, max_scene_num): |
|
cut_frames = [ele.get_frames() for ele in cut_list] |
|
cut_results = list(zip(cut_frames, cut_scores)) |
|
while len(scene_list) > max_scene_num: |
|
min_idx = np.argmin(cut_scores) |
|
cut_frames = [ele for idx, ele in enumerate(cut_frames) if idx != min_idx] |
|
cut_scores = [ele for idx, ele in enumerate(cut_scores) if idx != min_idx] |
|
|
|
|
|
num_scenes = len(scene_list) |
|
|
|
s1 = scene_list[min_idx] |
|
s2 = scene_list[min_idx+1] |
|
new_scene = (s1[0], s2[1]) |
|
if min_idx == 0: |
|
|
|
new_scene_list = [new_scene] + scene_list[2:] |
|
elif min_idx == num_scenes - 1: |
|
|
|
new_scene_list = scene_list[:min_idx-1] + [new_scene] |
|
else: |
|
new_scene_list = scene_list[:min_idx] + [new_scene] + scene_list[min_idx+2:] |
|
scene_list = new_scene_list |
|
cut_results = list(zip(cut_frames, cut_scores)) |
|
return scene_list, cut_results |
|
|
|
|
|
def split_video_into_scenes(video_path, threshold=27.0, max_scene_num=10, num_frame_per_scene=8): |
|
|
|
video = open_video(video_path) |
|
stats_manager = StatsManager() |
|
scene_manager = SceneManager(stats_manager) |
|
detector = ContentDetector(threshold=threshold) |
|
scene_manager.add_detector(detector) |
|
scene_manager.detect_scenes(video) |
|
scene_list = scene_manager.get_scene_list() |
|
cut_list = scene_manager.get_cut_list() |
|
num_frames = video.duration.get_frames() |
|
if len(scene_list) == len(cut_list) and len(scene_list) == 0: |
|
frame_ids = np.linspace(0, num_frames-1, num_frame_per_scene, dtype=int) |
|
return [frame_ids] |
|
assert len(scene_list) == len(cut_list) + 1, f"inconsistent lengths for scene list ({len(scene_list)}) vs. cut list ({len(cut_list)})" |
|
cut_frames = [ele.get_frames() for ele in cut_list] |
|
cut_scores = [stats_manager.get_metrics(f, ["delta_lum"])[0] for f in cut_frames] |
|
cut_results = list(zip(cut_frames, cut_scores)) |
|
|
|
while len(scene_list) > max_scene_num: |
|
min_idx = np.argmin(cut_scores) |
|
cut_frames = [ele for idx, ele in enumerate(cut_frames) if idx != min_idx] |
|
cut_scores = [ele for idx, ele in enumerate(cut_scores) if idx != min_idx] |
|
|
|
|
|
num_scenes = len(scene_list) |
|
|
|
s1 = scene_list[min_idx] |
|
s2 = scene_list[min_idx+1] |
|
new_scene = (s1[0], s2[1]) |
|
if min_idx == 0: |
|
|
|
new_scene_list = [new_scene] + scene_list[2:] |
|
elif min_idx == num_scenes - 1: |
|
|
|
new_scene_list = scene_list[:min_idx-1] + [new_scene] |
|
else: |
|
new_scene_list = scene_list[:min_idx] + [new_scene] + scene_list[min_idx+2:] |
|
scene_list = new_scene_list |
|
cut_results = list(zip(cut_frames, cut_scores)) |
|
|
|
prev_cut_point = 0 |
|
list_of_scene_frames = [] |
|
for (cur_cut_point, _) in cut_results: |
|
frame_ids = list(np.linspace(prev_cut_point, cur_cut_point-1, num_frame_per_scene, dtype=int)) |
|
list_of_scene_frames.append(frame_ids) |
|
prev_cut_point = cur_cut_point |
|
if cur_cut_point < num_frames: |
|
frame_ids = np.linspace(cur_cut_point, num_frames-1, num_frame_per_scene, dtype=int) |
|
list_of_scene_frames.append(frame_ids) |
|
|
|
return list_of_scene_frames |
|
|
|
|
|
def select_best_resolution(original_size, possible_resolutions): |
|
""" |
|
Selects the best resolution from a list of possible resolutions based on the original size. |
|
Args: |
|
original_size (tuple): The original size of the image in the format (width, height). |
|
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...]. |
|
Returns: |
|
tuple: The best fit resolution in the format (width, height). |
|
""" |
|
original_width, original_height = original_size |
|
best_fit = None |
|
max_effective_resolution = 0 |
|
min_wasted_resolution = float('inf') |
|
for width, height in possible_resolutions: |
|
scale = min(width / original_width, height / original_height) |
|
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale) |
|
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height) |
|
wasted_resolution = (width * height) - effective_resolution |
|
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution): |
|
max_effective_resolution = effective_resolution |
|
min_wasted_resolution = wasted_resolution |
|
best_fit = (width, height) |
|
return best_fit |
|
|
|
|
|
def resize_and_pad_image(image, target_resolution): |
|
""" |
|
Resize and pad an image to a target resolution while maintaining aspect ratio. |
|
Args: |
|
image (PIL.Image.Image): The input image. |
|
target_resolution (tuple): The target resolution (width, height) of the image. |
|
Returns: |
|
PIL.Image.Image: The resized and padded image. |
|
""" |
|
original_width, original_height = image.size |
|
target_width, target_height = target_resolution |
|
scale_w = target_width / original_width |
|
scale_h = target_height / original_height |
|
if scale_w < scale_h: |
|
new_width = target_width |
|
new_height = min(math.ceil(original_height * scale_w), target_height) |
|
else: |
|
new_height = target_height |
|
new_width = min(math.ceil(original_width * scale_h), target_width) |
|
|
|
resized_image = image.resize((new_width, new_height)) |
|
new_image = Image.new('RGB', (target_width, target_height), (0, 0, 0)) |
|
paste_x = (target_width - new_width) // 2 |
|
paste_y = (target_height - new_height) // 2 |
|
new_image.paste(resized_image, (paste_x, paste_y)) |
|
return new_image |
|
|
|
|
|
def divide_to_patches(image, patch_size): |
|
""" |
|
Divides an image into patches of a specified size. |
|
Args: |
|
image (PIL.Image.Image): The input image. |
|
patch_size (int): The size of each patch. |
|
Returns: |
|
list: A list of PIL.Image.Image objects representing the patches. |
|
""" |
|
patches = [] |
|
width, height = image.size |
|
for i in range(0, height, patch_size): |
|
for j in range(0, width, patch_size): |
|
box = (j, i, j + patch_size, i + patch_size) |
|
patch = image.crop(box) |
|
patches.append(patch) |
|
return patches |
|
|
|
|
|
def get_anyres_image_grid_shape(image_size, grids, patch_size): |
|
""" |
|
Calculate the shape of the image patch grid after the preprocessing for images of any resolution. |
|
Args: |
|
image_size (tuple): The size of the input image in the format (width, height). |
|
grids (str, List[tuple[int]]): Patch segmentation grid. |
|
patch_size (int): The size of each image patch. |
|
Returns: |
|
tuple: The shape of the image patch grid in the format (width, height). |
|
""" |
|
if type(grids) is list: |
|
possible_resolutions = [(x * patch_size, y * patch_size) for x, y in grids] |
|
else: |
|
possible_resolutions = [(x * patch_size, y * patch_size) for x, y in ast.literal_eval(grids)] |
|
width, height = select_best_resolution(image_size, possible_resolutions) |
|
return width // patch_size, height // patch_size |
|
|
|
|
|
def process_anyres_image(image, grids, patch_size): |
|
""" |
|
Process an image with variable resolutions. |
|
Args: |
|
image (PIL.Image.Image): The input image to be processed. |
|
grids (str, List[tuple[int]]): Patch segmentation grid. |
|
patch_size (int): The size of the patches to be extracted. |
|
Returns: |
|
torch.Tensor: A tensor containing the processed image patches. |
|
""" |
|
if type(grids) is list: |
|
possible_resolutions = [(x * patch_size, y * patch_size) for x, y in grids] |
|
else: |
|
possible_resolutions = [(x * patch_size, y * patch_size) for x, y in ast.literal_eval(grids)] |
|
best_resolution = select_best_resolution(image.size, possible_resolutions) |
|
image_padded = resize_and_pad_image(image, best_resolution) |
|
patches = divide_to_patches(image_padded, patch_size) |
|
image_original_resize = resize_and_pad_image(image, (patch_size, patch_size)) |
|
image_patches = [image_original_resize] + patches |
|
return image_patches |
|
|
|
|
|
def chunk_list(input_list, chunk_size): |
|
return [input_list[i:i + chunk_size] for i in range(0, len(input_list), chunk_size)] |
|
|
|
|
|
def frame_expansion(frame_list, n): |
|
assert len(frame_list) == n * n |
|
width, height = frame_list[0].width, frame_list[0].height |
|
expanded_width = n * width |
|
expanded_height = n * height |
|
expanded_frame = Image.new('RGB', (expanded_width, expanded_height)) |
|
for i in range(n): |
|
for j in range(n): |
|
frame = frame_list[i * n + j] |
|
coordinate = (j*width, i*height) |
|
expanded_frame.paste(frame, coordinate) |
|
return expanded_frame |
|
|
|
|
|
def load_image_from_base64(image): |
|
return Image.open(BytesIO(base64.b64decode(image))) |
|
|
|
|
|
def expand2square(pil_img, background_color): |
|
width, height = pil_img.size |
|
if width == height: |
|
return pil_img |
|
elif width > height: |
|
result = Image.new(pil_img.mode, (width, width), background_color) |
|
result.paste(pil_img, (0, (width - height) // 2)) |
|
return result |
|
else: |
|
result = Image.new(pil_img.mode, (height, height), background_color) |
|
result.paste(pil_img, ((height - width) // 2, 0)) |
|
return result |
|
|
|
|
|
def process_images(images, image_processor, model_cfg): |
|
image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None) |
|
new_images = [] |
|
|
|
if image_aspect_ratio == 'pad': |
|
for image in images: |
|
image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean)) |
|
image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] |
|
new_images.append(image) |
|
else: |
|
return image_processor(images, return_tensors='pt')['pixel_values'] |
|
if all(x.shape == new_images[0].shape for x in new_images): |
|
new_images = torch.stack(new_images, dim=0) |
|
return new_images |
|
|
|
|
|
def process_videos(frames, image_processor, model_cfg): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
new_frames = image_processor.preprocess(frames, return_tensors='pt')['pixel_values'] |
|
return new_frames |
|
|
|
|
|
def create_photo_grid(arr, rows=None, cols=None): |
|
""" |
|
Create a photo grid from a 4D numpy array with shape [t, h, w, c]. |
|
|
|
Parameters: |
|
arr (numpy.ndarray): Input array with shape [t, h, w, c]. |
|
rows (int): Optional. Number of rows in the grid. If not set, it will be determined based on `cols` or the square root of `t`. |
|
cols (int): Optional. Number of columns in the grid. If not set, it will be determined based on `rows` or the square root of `t`. |
|
|
|
Returns: |
|
numpy.ndarray: A 3D numpy array representing the photo grid. |
|
""" |
|
|
|
if isinstance(arr, list): |
|
if isinstance(arr[0], Image.Image): |
|
arr = np.stack([np.array(img) for img in arr]) |
|
elif isinstance(arr[0], np.ndarray): |
|
arr = np.stack(arr) |
|
else: |
|
raise ValueError("Invalid input type. Expected list of Images or numpy arrays.") |
|
|
|
t, h, w, c = arr.shape |
|
|
|
|
|
if rows is None and cols is None: |
|
rows = math.ceil(math.sqrt(t)) |
|
cols = math.ceil(t / rows) |
|
elif rows is None: |
|
rows = math.ceil(t / cols) |
|
elif cols is None: |
|
cols = math.ceil(t / rows) |
|
|
|
|
|
if rows * cols < t: |
|
raise ValueError(f"Not enough grid cells ({rows}x{cols}) to hold all images ({t}).") |
|
|
|
|
|
grid_height = h * rows |
|
grid_width = w * cols |
|
grid = np.zeros((grid_height, grid_width, c), dtype=arr.dtype) |
|
|
|
|
|
for i in range(t): |
|
row_idx = i // cols |
|
col_idx = i % cols |
|
grid[row_idx*h:(row_idx+1)*h, col_idx*w:(col_idx+1)*w, :] = arr[i] |
|
|
|
return grid |
|
|
|
|
|
def process_image(image_path, processor, aspect_ratio='pad', num_frames=NUM_FRAMES, image_grid=False): |
|
image = Image.open(image_path).convert('RGB') |
|
|
|
if image_grid: |
|
pg = np.stack([np.array(image)] * num_frames) |
|
grid_h = grid_w = math.ceil(math.sqrt(num_frames)) |
|
pg = create_photo_grid(pg, grid_h, grid_w) |
|
images = [pg, np.array(image)] |
|
else: |
|
images = [np.array(image)] |
|
|
|
if aspect_ratio == 'pad': |
|
images = [Image.fromarray(f) for f in images] |
|
images = [expand2square(image, tuple(int(x*255) for x in processor.image_mean)) for image in images] |
|
else: |
|
images = [Image.fromarray(f) for f in images] |
|
|
|
images = processor.preprocess(images, return_tensors='pt')['pixel_values'] |
|
return images |
|
|
|
|
|
def process_video(video_path, processor, aspect_ratio='pad', num_frames=NUM_FRAMES, image_grid=False, sample_scheme='uniform'): |
|
def frame_sample(duration, mode='uniform', local_fps=None): |
|
if mode == 'uniform': |
|
return np.linspace(0, duration-1, num_frames, dtype=int) |
|
elif mode == 'fps': |
|
assert local_fps is not None |
|
segment_len = min(local_fps // NUM_FRAMES_PER_SECOND, duration) |
|
frame_id_list = np.arange(segment_len // 2, duration, segment_len, dtype=int) |
|
if len(frame_id_list) < num_frames: |
|
frame_id_list = np.linspace(0, duration-1, num_frames, dtype=int) |
|
return frame_id_list |
|
else: |
|
raise ImportError(f'Unsupported frame sampling mode: {mode}') |
|
|
|
if isinstance(video_path, str): |
|
if video_path.endswith('.gif'): |
|
video_gif = imageio.get_reader(video_path) |
|
duration, local_fps = len(video_gif), 10 |
|
|
|
frame_id_list = frame_sample(duration, mode=sample_scheme, local_fps=local_fps) |
|
|
|
if len(frame_id_list) > MAX_FRAMES: |
|
frame_id_list = np.linspace(0, duration-1, MAX_FRAMES, dtype=int) |
|
video_data = [frame for index, frame in enumerate(video_gif) if index in frame_id_list] |
|
|
|
elif video_path.endswith('.webm'): |
|
video_webm = VideoFileClip(video_path) |
|
video_frames = np.array(list(video_webm.iter_frames())) |
|
|
|
duration, local_fps = len(video_frames), video_webm.fps |
|
|
|
frame_id_list = frame_sample(duration, mode=sample_scheme, local_fps=local_fps) |
|
|
|
if len(frame_id_list) > MAX_FRAMES: |
|
frame_id_list = np.linspace(0, duration-1, MAX_FRAMES, dtype=int) |
|
video_data = video_frames[frame_id_list] |
|
else: |
|
decord_vr = VideoReader(uri=video_path, ctx=cpu(0)) if "Valley/finetune/source_videos" not in video_path else VideoReader(uri=video_path, ctx=cpu(0), num_threads=1) |
|
duration, local_fps = len(decord_vr), float(decord_vr.get_avg_fps()) |
|
|
|
frame_id_list = frame_sample(duration, mode=sample_scheme, local_fps=local_fps) |
|
|
|
if len(frame_id_list) > MAX_FRAMES: |
|
frame_id_list = np.linspace(0, duration-1, MAX_FRAMES, dtype=int) |
|
try: |
|
video_data = decord_vr.get_batch(frame_id_list).numpy() |
|
except: |
|
video_data = decord_vr.get_batch(frame_id_list).asnumpy() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
else: |
|
video = video_path |
|
frame_id_list = frame_sample(duration, mode='uniform') |
|
video_data = [video.get_data(frame_id) for frame_id in frame_id_list] |
|
|
|
if image_grid: |
|
grid_h = grid_w = math.ceil(math.sqrt(num_frames)) |
|
pg = create_photo_grid(video_data, grid_h, grid_w) |
|
video_data = [pg, *video_data] |
|
|
|
if aspect_ratio == 'pad': |
|
images = [Image.fromarray(f.numpy() if isinstance(f, torch.Tensor) else f) for f in video_data] |
|
images = [expand2square(image, tuple(int(x*255) for x in processor.image_mean)) for image in images] |
|
video = processor.preprocess(images, return_tensors='pt')['pixel_values'] |
|
else: |
|
images = [Image.fromarray(f.numpy() if isinstance(f, torch.Tensor) else f) for f in video_data] |
|
video = processor.preprocess(images, return_tensors='pt')['pixel_values'] |
|
|
|
return video |
|
|
|
|
|
def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None): |
|
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')] |
|
|
|
def insert_separator(X, sep): |
|
return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1] |
|
|
|
input_ids = [] |
|
offset = 0 |
|
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id: |
|
offset = 1 |
|
input_ids.append(prompt_chunks[0][0]) |
|
|
|
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)): |
|
input_ids.extend(x[offset:]) |
|
|
|
if return_tensors is not None: |
|
if return_tensors == 'pt': |
|
return torch.tensor(input_ids, dtype=torch.long) |
|
raise ValueError(f'Unsupported tensor type: {return_tensors}') |
|
return input_ids |
|
|
|
|
|
def tokenizer_MMODAL_token(prompt, tokenizer, MMODAL_token_index=IMAGE_TOKEN_INDEX, return_tensors=None): |
|
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split(f'<{MMODAL_INDEX_TOKEN[MMODAL_token_index].lower()}>')] |
|
num_prompt_chunks = len(prompt.split(f'<{MMODAL_INDEX_TOKEN[MMODAL_token_index].lower()}>')) |
|
|
|
def insert_separator(X, sep): |
|
return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1] |
|
|
|
input_ids = [] |
|
offset = 0 |
|
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id: |
|
offset = 1 |
|
input_ids.append(prompt_chunks[0][0]) |
|
|
|
for x in insert_separator(prompt_chunks, [MMODAL_token_index] * (offset + 1)): |
|
input_ids.extend(x[offset:]) |
|
|
|
if return_tensors is not None: |
|
if return_tensors == 'pt': |
|
return torch.tensor(input_ids, dtype=torch.long) |
|
raise ValueError(f'Unsupported tensor type: {return_tensors}') |
|
return input_ids |
|
|
|
|
|
def get_model_name_from_path(model_path): |
|
model_path = model_path.strip("/") |
|
model_paths = model_path.split("/") |
|
if model_paths[-1].startswith('checkpoint-'): |
|
return model_paths[-2] + "_" + model_paths[-1] |
|
else: |
|
return model_paths[-1] |
|
|
|
|
|
class KeywordsStoppingCriteria(StoppingCriteria): |
|
def __init__(self, keywords, tokenizer, input_ids): |
|
self.keywords = keywords |
|
self.keyword_ids = [] |
|
self.max_keyword_len = 0 |
|
for keyword in keywords: |
|
cur_keyword_ids = tokenizer(keyword).input_ids |
|
if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id: |
|
cur_keyword_ids = cur_keyword_ids[1:] |
|
if len(cur_keyword_ids) > self.max_keyword_len: |
|
self.max_keyword_len = len(cur_keyword_ids) |
|
self.keyword_ids.append(torch.tensor(cur_keyword_ids)) |
|
self.tokenizer = tokenizer |
|
self.start_len = input_ids.shape[1] |
|
|
|
def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: |
|
offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len) |
|
self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids] |
|
for keyword_id in self.keyword_ids: |
|
if (output_ids[0, -keyword_id.shape[0]:] == keyword_id).all(): |
|
return True |
|
outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0] |
|
for keyword in self.keywords: |
|
if keyword in outputs: |
|
return True |
|
return False |
|
|
|
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: |
|
outputs = [] |
|
for i in range(output_ids.shape[0]): |
|
outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores)) |
|
return all(outputs) |
|
|