|
import os |
|
import re |
|
import math |
|
import json |
|
import argparse |
|
import warnings |
|
from tqdm import tqdm |
|
|
|
import torch |
|
import decord |
|
import numpy as np |
|
import transformers |
|
from decord import VideoReader, cpu |
|
from torch.utils.data import Dataset, DataLoader |
|
|
|
import sys |
|
sys.path.append('./') |
|
from videollama2.conversation import conv_templates, SeparatorStyle |
|
from videollama2.constants import NUM_FRAMES, DEFAULT_MMODAL_TOKEN, DEFAULT_MMODAL_START_TOKEN, DEFAULT_MMODAL_END_TOKEN, MMODAL_TOKEN_INDEX |
|
from videollama2.mm_utils import get_model_name_from_path, tokenizer_MMODAL_token, KeywordsStoppingCriteria, process_video |
|
from videollama2.model.builder import load_pretrained_model |
|
|
|
|
|
|
|
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated') |
|
|
|
default_mm_token = DEFAULT_MMODAL_TOKEN["VIDEO"] |
|
default_mm_start_token = DEFAULT_MMODAL_START_TOKEN["VIDEO"] |
|
default_mm_end_token = DEFAULT_MMODAL_END_TOKEN["VIDEO"] |
|
modal_token_index = MMODAL_TOKEN_INDEX["VIDEO"] |
|
|
|
|
|
def split_list(lst, n): |
|
"""Split a list into n (roughly) equal-sized chunks""" |
|
chunk_size = math.ceil(len(lst) / n) |
|
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] |
|
|
|
|
|
def get_chunk(lst, n, k): |
|
chunks = split_list(lst, n) |
|
return chunks[k] |
|
|
|
|
|
class VCGPTDataset(Dataset): |
|
|
|
video_formats = ['.mp4', '.avi', '.mov', '.mkv'] |
|
|
|
def __init__(self, data_list, processor, num_frames): |
|
self.data_list = data_list |
|
self.processor = processor |
|
self.num_frames = num_frames |
|
|
|
def __len__(self): |
|
return len(self.data_list) |
|
|
|
def __getitem__(self, idx): |
|
line = self.data_list[idx] |
|
question1 = line['Q1'] |
|
question2 = line['Q2'] |
|
answer = line['A'] |
|
video_name = line['video_name'] |
|
|
|
for fmt in self.video_formats: |
|
temp_path = os.path.join(args.video_folder, f"{video_name}{fmt}") |
|
if os.path.exists(temp_path): |
|
video_path = temp_path |
|
break |
|
|
|
video_tensor = process_video(video_path, self.processor, aspect_ratio=None, sample_scheme='uniform', num_frames=self.num_frames) |
|
|
|
return { |
|
'video': video_tensor, |
|
'video_name': video_name, |
|
'question1': question1, |
|
'question2': question2, |
|
'answer': answer, |
|
} |
|
|
|
|
|
def collate_fn(batch): |
|
vid = [x['video'] for x in batch] |
|
v_id = [x['video_name'] for x in batch] |
|
qus1 = [x['question1'] for x in batch] |
|
qus2 = [x['question2'] for x in batch] |
|
ans = [x['answer'] for x in batch] |
|
vid = torch.stack(vid, dim=0) |
|
return vid, v_id, qus1, qus2, ans |
|
|
|
|
|
def get_model_output(model, tokenizer, qs, video_tensor, args): |
|
if model.config.mm_use_im_start_end: |
|
qs = default_mm_start_token + default_mm_token + default_mm_end_token + "\n" + qs |
|
else: |
|
qs = default_mm_token + "\n" + qs |
|
|
|
conv = conv_templates[args.conv_mode].copy() |
|
conv.append_message(conv.roles[0], qs) |
|
conv.append_message(conv.roles[1], None) |
|
prompt = conv.get_prompt() |
|
|
|
|
|
input_ids = tokenizer_MMODAL_token(prompt, tokenizer, modal_token_index, return_tensors='pt').to(args.device) |
|
|
|
attention_mask=input_ids.ne(tokenizer.pad_token_id).to(args.device) |
|
|
|
modal_list = ["video"] |
|
video_tensor = video_tensor.to(dtype=torch.float16, device=args.device, non_blocking=True) |
|
|
|
with torch.inference_mode(): |
|
output_ids = model.generate( |
|
input_ids.unsqueeze(0), |
|
attention_mask=attention_mask.unsqueeze(0), |
|
images_or_videos=[video_tensor], |
|
modal_list=modal_list, |
|
do_sample=False, |
|
max_new_tokens=1024, |
|
use_cache=True, |
|
pad_token_id=tokenizer.eos_token_id) |
|
|
|
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() |
|
return outputs |
|
|
|
|
|
def run_inference(args): |
|
model_name = get_model_name_from_path(args.model_path) |
|
tokenizer, model, processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name) |
|
|
|
num_frames = model.config.num_frames if hasattr(model.config, "num_frames") else NUM_FRAMES |
|
|
|
questions = json.load(open(args.question_file, "r")) |
|
questions = get_chunk(questions, args.num_chunks, args.chunk_idx) |
|
|
|
assert args.batch_size == 1, "Batch size must be 1 for inference" |
|
dataset = VCGPTDataset(questions, processor, num_frames) |
|
dataloader = DataLoader(dataset, shuffle=False, batch_size=args.batch_size, num_workers=args.num_workers, collate_fn=collate_fn) |
|
|
|
answer_file = os.path.expanduser(args.answer_file) |
|
os.makedirs(os.path.dirname(answer_file), exist_ok=True) |
|
ans_file = open(answer_file, "w") |
|
|
|
output_list = [] |
|
|
|
|
|
for i, (video_tensors, video_names, questions1, questions2, answers) in enumerate(tqdm(dataloader)): |
|
|
|
|
|
video_tensor = video_tensors[0] |
|
video_name = video_names[0] |
|
question1 = questions1[0] |
|
question2 = questions2[0] |
|
answer = answers[0] |
|
|
|
output1 = get_model_output(model, tokenizer, question1, video_tensor, args) |
|
output2 = get_model_output(model, tokenizer, question2, video_tensor, args) |
|
|
|
qa = {'video_name': video_name, 'Q1': question1, 'Q2': question2, 'A': answer, 'P1': output1, 'P2': output2} |
|
|
|
ans_file.write(json.dumps(qa) + "\n") |
|
|
|
ans_file.close() |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
|
|
parser.add_argument('--model-path', help='', required=True) |
|
parser.add_argument('--model_base', help='', default=None, type=str, required=False) |
|
parser.add_argument('--video-folder', help='Directory containing video files.', required=True) |
|
parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True) |
|
parser.add_argument('--answer-file', help='Path to the ground truth file containing answers.', required=True) |
|
parser.add_argument("--conv-mode", type=str, default="llava_v1") |
|
parser.add_argument("--num-chunks", type=int, default=1) |
|
parser.add_argument("--chunk-idx", type=int, default=0) |
|
parser.add_argument("--device", type=str, required=False, default='cuda:0') |
|
parser.add_argument("--model_max_length", type=int, required=False, default=2048) |
|
parser.add_argument("--batch-size", type=int, required=False, default=1) |
|
parser.add_argument("--num-workers", type=int, required=False, default=8) |
|
|
|
args = parser.parse_args() |
|
|
|
run_inference(args) |
|
|