|
import math |
|
import os |
|
import argparse |
|
import json |
|
import warnings |
|
from tqdm import tqdm |
|
|
|
import torch |
|
import numpy as np |
|
import transformers |
|
import decord |
|
from decord import VideoReader, cpu |
|
|
|
import sys |
|
sys.path.append('./') |
|
from videollama2.conversation import conv_templates, SeparatorStyle |
|
from videollama2.constants import NUM_FRAMES, DEFAULT_MMODAL_TOKEN, DEFAULT_MMODAL_START_TOKEN, DEFAULT_MMODAL_END_TOKEN, MMODAL_TOKEN_INDEX |
|
from videollama2.mm_utils import get_model_name_from_path, tokenizer_MMODAL_token, KeywordsStoppingCriteria, process_video |
|
from videollama2.model.builder import load_pretrained_model |
|
|
|
|
|
|
|
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated') |
|
|
|
default_mm_token = DEFAULT_MMODAL_TOKEN["VIDEO"] |
|
default_mm_start_token = DEFAULT_MMODAL_START_TOKEN["VIDEO"] |
|
default_mm_end_token = DEFAULT_MMODAL_END_TOKEN["VIDEO"] |
|
modal_token_index = MMODAL_TOKEN_INDEX["VIDEO"] |
|
|
|
|
|
def split_list(lst, n): |
|
"""Split a list into n (roughly) equal-sized chunks""" |
|
chunk_size = math.ceil(len(lst) / n) |
|
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] |
|
|
|
|
|
def get_chunk(lst, n, k): |
|
chunks = split_list(lst, n) |
|
return chunks[k] |
|
|
|
|
|
def get_model_output(model, tokenizer, video_tensor, questions, conv_mode="v1", device='cuda'): |
|
|
|
input_ids = [] |
|
modal_list = [] |
|
for qs in questions: |
|
if model.config.mm_use_im_start_end: |
|
qs = default_mm_start_token + default_mm_token + default_mm_end_token + "\n" + qs |
|
else: |
|
qs = default_mm_token + "\n" + qs |
|
|
|
conv = conv_templates[conv_mode].copy() |
|
conv.append_message(conv.roles[0], qs) |
|
conv.append_message(conv.roles[1], None) |
|
prompt = conv.get_prompt() |
|
|
|
input_id = tokenizer_MMODAL_token(prompt, tokenizer, modal_token_index, return_tensors='pt') |
|
input_ids.append(input_id) |
|
modal_list.append("video") |
|
|
|
|
|
input_ids = torch.nn.utils.rnn.pad_sequence( |
|
[x.flip(dims=[0]) for x in input_ids], |
|
batch_first=True, |
|
padding_value=tokenizer.pad_token_id).flip(dims=[1]).to(device) |
|
|
|
attention_mask=input_ids.ne(tokenizer.pad_token_id).to(device) |
|
|
|
video_tensor = video_tensor.half().to(args.device) |
|
|
|
with torch.inference_mode(): |
|
output_ids = model.generate( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
images_or_videos=video_tensor, |
|
modal_list=modal_list, |
|
do_sample=False, |
|
max_new_tokens=1024, |
|
use_cache=True, |
|
pad_token_id=tokenizer.eos_token_id) |
|
|
|
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True) |
|
return outputs |
|
|
|
|
|
def run_inference(args): |
|
|
|
model_name = get_model_name_from_path(args.model_path) |
|
tokenizer, model, processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name) |
|
|
|
num_frames = model.config.num_frames if hasattr(model.config, "num_frames") else NUM_FRAMES |
|
|
|
gt_questions = json.load(open(args.question_file, "r")) |
|
gt_questions = get_chunk(gt_questions, args.num_chunks, args.chunk_idx) |
|
gt_answers = json.load(open(args.answer_file, "r")) |
|
gt_answers = get_chunk(gt_answers, args.num_chunks, args.chunk_idx) |
|
|
|
answer_file = os.path.join(args.output_file) |
|
os.makedirs(os.path.dirname(args.output_file), exist_ok=True) |
|
ans_file = open(answer_file, "w") |
|
|
|
video_formats = ['.mp4', '.avi', '.mov', '.mkv'] |
|
|
|
|
|
for idx, sample in enumerate(tqdm(gt_questions)): |
|
video_name = sample['video_name'] |
|
question = sample['question'] |
|
id = sample['question_id'] |
|
answer = gt_answers[idx]['answer'] |
|
|
|
|
|
for fmt in video_formats: |
|
temp_path = os.path.join(args.video_folder, f"v_{video_name}{fmt}") |
|
if os.path.exists(temp_path): |
|
video_path = temp_path |
|
break |
|
|
|
temp_path = os.path.join(args.video_folder, f"{video_name}{fmt}") |
|
if os.path.exists(temp_path): |
|
video_path = temp_path |
|
break |
|
|
|
|
|
|
|
video_tensor = process_video(video_path, processor, aspect_ratio=None, sample_scheme='uniform', num_frames=num_frames) |
|
output = get_model_output(model, tokenizer, video_tensor[None], [question], args.conv_mode, args.device)[0] |
|
|
|
sample_set = {'id': id, 'question': question, 'answer': answer, 'pred': output} |
|
ans_file.write(json.dumps(sample_set) + "\n") |
|
|
|
ans_file.close() |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
|
|
parser.add_argument('--model-path', help='', required=True) |
|
parser.add_argument('--model_base', help='', default=None, type=str, required=False) |
|
parser.add_argument('--video-folder', help='Directory containing video files.', required=True) |
|
parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True) |
|
parser.add_argument('--answer-file', help='Path to the ground truth file containing answers.', required=True) |
|
parser.add_argument('--output-file', help='Directory to save the model results JSON.', required=True) |
|
parser.add_argument("--conv-mode", type=str, default="llava_v1") |
|
parser.add_argument("--num-chunks", type=int, default=1) |
|
parser.add_argument("--chunk-idx", type=int, default=0) |
|
parser.add_argument("--device", type=str, required=False, default='cuda:0') |
|
parser.add_argument("--model_max_length", type=int, required=False, default=2048) |
|
|
|
args = parser.parse_args() |
|
run_inference(args) |
|
|