|
import os |
|
import re |
|
import math |
|
import json |
|
import argparse |
|
import warnings |
|
|
|
import torch |
|
import decord |
|
import numpy as np |
|
import transformers |
|
from PIL import Image |
|
from tqdm import tqdm |
|
from decord import VideoReader, cpu |
|
from torch.utils.data import Dataset, DataLoader |
|
from torchvision import transforms as T |
|
from torchvision.transforms import functional as F |
|
|
|
import sys |
|
sys.path.append('./') |
|
from videollama2.conversation import conv_templates, SeparatorStyle |
|
from videollama2.constants import NUM_FRAMES, DEFAULT_MMODAL_TOKEN, DEFAULT_MMODAL_START_TOKEN, DEFAULT_MMODAL_END_TOKEN, MMODAL_TOKEN_INDEX |
|
from videollama2.mm_utils import get_model_name_from_path, tokenizer_MMODAL_token, KeywordsStoppingCriteria, process_videos, expand2square |
|
from videollama2.model.builder import load_pretrained_model |
|
|
|
|
|
|
|
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated') |
|
|
|
default_mm_token = DEFAULT_MMODAL_TOKEN["VIDEO"] |
|
default_mm_start_token = DEFAULT_MMODAL_START_TOKEN["VIDEO"] |
|
default_mm_end_token = DEFAULT_MMODAL_END_TOKEN["VIDEO"] |
|
modal_token_index = MMODAL_TOKEN_INDEX["VIDEO"] |
|
|
|
|
|
def split_list(lst, n): |
|
"""Split a list into n (roughly) equal-sized chunks""" |
|
chunk_size = math.ceil(len(lst) / n) |
|
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] |
|
|
|
|
|
def get_chunk(lst, n, k): |
|
chunks = split_list(lst, n) |
|
return chunks[k] |
|
|
|
|
|
class MVBenchDataset(Dataset): |
|
|
|
def __init__(self, data_list, processor, num_segments=8): |
|
self.data_list = data_list |
|
|
|
self.decord_method = { |
|
'video': self.read_video, |
|
'gif': self.read_gif, |
|
'frame': self.read_frame, |
|
} |
|
|
|
self.processor = processor |
|
self.num_segments = num_segments |
|
|
|
def __str__(self): |
|
len_list = {} |
|
option_list = {} |
|
for data in self.data_list: |
|
if data['task_type'] not in len_list: |
|
len_list[data['task_type']] = 0 |
|
len_list[data['task_type']] += 1 |
|
if data['task_type'] not in option_list: |
|
option_list[data['task_type']] = 0 |
|
option_list[data['task_type']] += len(data['data']['candidates']) |
|
|
|
correct = 0 |
|
total = 0 |
|
res = f"There are {len(self.data_list)} videos as follow:\n" |
|
for k, v in len_list.items(): |
|
correct += len_list[k] |
|
total += option_list[k] |
|
res += f"{v} for {k} ({option_list[k]} options => {len_list[k]/option_list[k]*100:.2f}%)\n" |
|
correct = correct + 1 / option_list[k] |
|
res += f"Total random accuracy: {correct/total*100:.2f}%" |
|
return res.rstrip() |
|
|
|
def __len__(self): |
|
return len(self.data_list) |
|
|
|
def get_index(self, bound, fps, max_frame, first_idx=0): |
|
if bound: |
|
start, end = bound[0], bound[1] |
|
else: |
|
start, end = -100000, 100000 |
|
start_idx = max(first_idx, round(start * fps)) |
|
end_idx = min(round(end * fps), max_frame) |
|
seg_size = float(end_idx - start_idx) / self.num_segments |
|
frame_indices = np.array([ |
|
int(start_idx + (seg_size / 2) + np.round(seg_size * idx)) |
|
for idx in range(self.num_segments) |
|
]) |
|
return frame_indices |
|
|
|
def read_video(self, video_path, bound=None): |
|
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1) |
|
max_frame = len(vr) - 1 |
|
fps = float(vr.get_avg_fps()) |
|
|
|
images_group = list() |
|
frame_indices = self.get_index(bound, fps, max_frame, first_idx=0) |
|
for frame_index in frame_indices: |
|
img = Image.fromarray(vr[frame_index].asnumpy()) |
|
images_group.append(img) |
|
|
|
torch_imgs = self.processor(images_group, return_tensors='pt')['pixel_values'] |
|
return torch_imgs |
|
|
|
def read_gif(self, video_path, bound=None, fps=25): |
|
gif = imageio.get_reader(video_path) |
|
max_frame = len(gif) - 1 |
|
|
|
images_group = list() |
|
frame_indices = self.get_index(bound, fps, max_frame, first_idx=0) |
|
for index, frame in enumerate(gif): |
|
if index in frame_indices: |
|
img = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB) |
|
img = Image.fromarray(img) |
|
images_group.append(img) |
|
|
|
torch_imgs = self.processor(images_group, return_tensors='pt')['pixel_values'] |
|
return torch_imgs |
|
|
|
def read_frame(self, video_path, bound=None, fps=3): |
|
max_frame = len(os.listdir(video_path)) |
|
images_group = list() |
|
frame_indices = self.get_index(bound, fps, max_frame, first_idx=1) |
|
for frame_index in frame_indices: |
|
img = Image.open(os.path.join(video_path, f"{frame_index:05d}.jpg")) |
|
images_group.append(img) |
|
|
|
torch_imgs = self.processor.preprocess(images_group, return_tensors='pt')['pixel_values'] |
|
return torch_imgs |
|
|
|
def qa_template(self, data): |
|
question = f"Question: {data['question']}\n" |
|
question += "Options:\n" |
|
answer = data['answer'] |
|
answer_idx = -1 |
|
for idx, c in enumerate(data['candidates']): |
|
question += f"({chr(ord('A') + idx)}) {c}\n" |
|
if c == answer: |
|
answer_idx = idx |
|
question = question.rstrip() |
|
answer = f"({chr(ord('A') + answer_idx)}) {answer}" |
|
return question, answer |
|
|
|
def __getitem__(self, idx): |
|
decord_method = self.decord_method[self.data_list[idx]['data_type']] |
|
bound = None |
|
if self.data_list[idx]['bound']: |
|
bound = ( |
|
self.data_list[idx]['data']['start'], |
|
self.data_list[idx]['data']['end'], |
|
) |
|
video_path = os.path.join(self.data_list[idx]['prefix'], self.data_list[idx]['data']['video']) |
|
torch_imgs = decord_method(video_path, bound) |
|
question = self.data_list[idx]['data']['question'] |
|
options = self.data_list[idx]['data']['candidates'] |
|
answer = self.data_list[idx]['data']['answer'] |
|
task_type = self.data_list[idx]['task_type'] |
|
|
|
|
|
|
|
answer_idx = -1 |
|
letters = [] |
|
options_string = '' |
|
for option_idx, c in enumerate(options): |
|
letters.append(f"{chr(ord('A') + option_idx)}") |
|
options_string += f"({chr(ord('A') + option_idx)}) {c}\n" |
|
if c == answer: |
|
answer_idx = option_idx |
|
|
|
option_question = f'Question: {question}\nOptions:\n{options_string}Answer with the option\'s letter from the given choices directly and only give the best option.' |
|
|
|
return { |
|
'video': torch_imgs, |
|
'video_path': video_path, |
|
'question': option_question, |
|
'letters': ','.join(letters), |
|
'answer_idx': answer_idx, |
|
'task_type': task_type |
|
} |
|
|
|
|
|
tasks = { |
|
"Action Sequence": ("action_sequence.json", "star/Charades_v1_480/", "video", True), |
|
"Action Prediction": ("action_prediction.json", "star/Charades_v1_480/", "video", True), |
|
"Action Antonym": ("action_antonym.json", "ssv2_video/", "video", False), |
|
"Fine-grained Action": ("fine_grained_action.json", "Moments_in_Time_Raw/videos/", "video", False), |
|
"Unexpected Action": ("unexpected_action.json", "FunQA_test/test/", "video", False), |
|
"Object Existence": ("object_existence.json", "clevrer/video_validation/", "video", False), |
|
"Object Interaction": ("object_interaction.json", "star/Charades_v1_480/", "video", True), |
|
"Object Shuffle": ("object_shuffle.json", "perception/videos/", "video", False), |
|
"Moving Direction": ("moving_direction.json", "clevrer/video_validation/", "video", False), |
|
"Action Localization": ("action_localization.json", "sta/sta_video/", "video", True), |
|
"Scene Transition": ("scene_transition.json", "scene_qa/video/", "video", False), |
|
"Action Count": ("action_count.json", "perception/videos/", "video", False), |
|
"Moving Count": ("moving_count.json", "clevrer/video_validation/", "video", False), |
|
"Moving Attribute": ("moving_attribute.json", "clevrer/video_validation/", "video", False), |
|
"State Change": ("state_change.json", "perception/videos/", "video", False), |
|
"Fine-grained Pose": ("fine_grained_pose.json", "nturgbd/", "video", False), |
|
"Character Order": ("character_order.json", "perception/videos/", "video", False), |
|
"Egocentric Navigation": ("egocentric_navigation.json", "vlnqa/", "video", False), |
|
"Episodic Reasoning": ("episodic_reasoning.json", "tvqa/frames_fps3_hq/", "frame", True), |
|
"Counterfactual Inference": ("counterfactual_inference.json", "clevrer/video_validation/", "video", False), |
|
} |
|
|
|
|
|
def build_mvbench_eval(args, processor, num_frames): |
|
data_list = [] |
|
for task_name, task in tasks.items(): |
|
json_file = os.path.join(args.question_file, task[0]) |
|
vis_folder = os.path.join(args.video_folder, task[1]) |
|
with open(json_file, 'r') as f: |
|
json_data = json.load(f) |
|
for data in json_data: |
|
data_list.append({ |
|
'task_type': task_name, |
|
'prefix': vis_folder, |
|
'data_type': task[2], |
|
'bound': task[3], |
|
'data': data |
|
}) |
|
data_list = get_chunk(data_list, args.num_chunks, args.chunk_idx) |
|
dataset = MVBenchDataset(data_list, processor, num_segments=num_frames) |
|
dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers) |
|
|
|
return dataloader |
|
|
|
|
|
def mvbench_dump(ans_file, line, outputs): |
|
for idx, output in enumerate(outputs): |
|
vid = line['video_path'][idx] |
|
task_type = line['task_type'][idx] |
|
letters = line['letters'][idx].split(',') |
|
answer_idx = line['answer_idx'][idx].item() |
|
|
|
pred_answer = re.findall(f'[\(,\ ]*[{letters[0]}-{letters[-1]}][\),\ ]*', output) |
|
if len(pred_answer) == 0: |
|
pred_idx = (answer_idx + 1) % len(letters) |
|
else: |
|
pred_answer = pred_answer[0].strip() |
|
if pred_answer.startswith('('): |
|
pred_answer = pred_answer.strip('()') |
|
pred_idx = letters.index(pred_answer) |
|
|
|
ans_file.write(json.dumps({"vid": vid, "task_type": task_type, "pred": pred_idx, "gt": answer_idx}) + '\n') |
|
|
|
|
|
class NextoeDataset(Dataset): |
|
|
|
video_formats = ['.mp4', '.avi', '.mov', '.mkv'] |
|
|
|
def __init__(self, data_list, processor, num_segments=8): |
|
self.data_list = data_list |
|
self.processor = processor |
|
self.num_segments = num_segments |
|
|
|
def __len__(self): |
|
return len(self.data_list) |
|
|
|
def __getitem__(self, idx): |
|
line = self.data_list[idx] |
|
video_name = line['video'] |
|
question = line['question'] |
|
answer = line['answer'] |
|
|
|
for fmt in self.video_formats: |
|
temp_path = os.path.join(args.video_folder, f"{video_name}{fmt}") |
|
if os.path.exists(temp_path): |
|
video_path = temp_path |
|
break |
|
|
|
decord_vr = VideoReader(uri=video_path, ctx=cpu(0)) |
|
frames = decord_vr.get_batch(np.linspace(0, len(decord_vr) - 1, 8, dtype=int)).asnumpy() |
|
video_tensor = self.processor.preprocess(frames, return_tensors='pt')['pixel_values'] |
|
|
|
wrapped_question = f'Question: {question}\nAnswer the question using a single word or a short phrase with multiple words.' |
|
|
|
return { |
|
'video': video_tensor, |
|
'question': wrapped_question, |
|
'answer': answer, |
|
'qid': line['qid'] |
|
} |
|
|
|
|
|
def build_nextoe_eval(args, processor, num_frames): |
|
questions = json.load(open(args.question_file, "r")) |
|
questions = get_chunk(questions, args.num_chunks, args.chunk_idx) |
|
dataset = NextoeDataset(questions, processor, num_segments=num_frames) |
|
dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers) |
|
|
|
return dataloader |
|
|
|
|
|
def nextoe_dump(ans_file, line, outputs): |
|
for idx, output in enumerate(outputs): |
|
vid, qid = line['qid'][idx].split('_') |
|
ans_file.write(json.dumps({"vid": vid, "qid": qid, "prediction": output}) + '\n') |
|
|
|
|
|
class NextqaDataset(Dataset): |
|
|
|
video_formats = ['.mp4', '.avi', '.mov', '.mkv'] |
|
|
|
def __init__(self, data_list, processor, num_segments=8): |
|
self.data_list = data_list |
|
self.processor = processor |
|
self.num_segments = num_segments |
|
|
|
def __len__(self): |
|
return len(self.data_list) |
|
|
|
def __getitem__(self, idx): |
|
line = self.data_list[idx] |
|
video_name = line['video'] |
|
question = line['question'] |
|
answer = line['answer'] |
|
|
|
for fmt in self.video_formats: |
|
temp_path = os.path.join(args.video_folder, f"{video_name}{fmt}") |
|
if os.path.exists(temp_path): |
|
video_path = temp_path |
|
break |
|
|
|
decord_vr = VideoReader(uri=video_path, ctx=cpu(0)) |
|
frames = decord_vr.get_batch(np.linspace(0, len(decord_vr) - 1, 8, dtype=int)).asnumpy() |
|
video_tensor = self.processor.preprocess(frames, return_tensors='pt')['pixel_values'] |
|
|
|
assert line['num_option'] == 5 |
|
a0 = line['a0'] |
|
a1 = line['a1'] |
|
a2 = line['a2'] |
|
a3 = line['a3'] |
|
a4 = line['a4'] |
|
|
|
option_question = f'Question: {question}\nOptions:\n(A) {a0}\n(B) {a1}\n(C) {a2}\n(D) {a3}\n(E) {a4}\nAnswer with the option\'s letter from the given choices directly and only give the best option.' |
|
|
|
return { |
|
'video': video_tensor, |
|
'question': option_question, |
|
'answer': answer, |
|
'qid': line['qid'] |
|
} |
|
|
|
|
|
def build_nextqa_eval(args, processor, num_frames): |
|
questions = json.load(open(args.question_file, "r")) |
|
questions = get_chunk(questions, args.num_chunks, args.chunk_idx) |
|
dataset = NextqaDataset(questions, processor, num_segments=num_frames) |
|
dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers) |
|
|
|
return dataloader |
|
|
|
|
|
def nextqa_dump(ans_file, line, outputs): |
|
for idx, output in enumerate(outputs): |
|
qid = line['qid'][idx] |
|
answer = line['answer'][idx].item() |
|
|
|
letters = ['A', 'B', 'C', 'D', 'E'] |
|
|
|
pred_answer = re.findall('[\(,\ ]*[A-E][\),\ ]*', output) |
|
if len(pred_answer) == 0: |
|
pred_idx = 2 |
|
else: |
|
pred_answer = pred_answer[0].strip() |
|
if pred_answer.startswith('('): |
|
pred_answer = pred_answer.strip('()') |
|
pred_idx = letters.index(pred_answer) |
|
|
|
ans_file.write(json.dumps({"id": qid, "prediction": pred_idx, "answer": answer}) + '\n') |
|
|
|
|
|
class EgoschemaDataset(Dataset): |
|
|
|
video_formats = ['.mp4', '.avi', '.mov', '.mkv'] |
|
|
|
def __init__(self, data_list, processor, num_segments=8): |
|
self.data_list = data_list |
|
self.processor = processor |
|
self.num_segments = num_segments |
|
|
|
def __len__(self): |
|
return len(self.data_list) |
|
|
|
def __getitem__(self, idx): |
|
line = self.data_list[idx] |
|
q_uid = line['q_uid'] |
|
|
|
for fmt in self.video_formats: |
|
temp_path = os.path.join(args.video_folder, f"{q_uid}{fmt}") |
|
if os.path.exists(temp_path): |
|
video_path = temp_path |
|
break |
|
|
|
decord_vr = VideoReader(uri=video_path, ctx=cpu(0)) |
|
frames = decord_vr.get_batch(np.linspace(0, len(decord_vr) - 1, self.num_segments, dtype=int)).asnumpy() |
|
video_tensor = self.processor.preprocess(frames, return_tensors='pt')['pixel_values'] |
|
|
|
question = line['question'] |
|
a0 = line['option 0'] |
|
a1 = line['option 1'] |
|
a2 = line['option 2'] |
|
a3 = line['option 3'] |
|
a4 = line['option 4'] |
|
axs = [a0, a1, a2, a3, a4] |
|
ops = ['(A)', '(B)', '(C)', '(D)', '(E)'] |
|
|
|
option_question = f'Question: {question}\nOptions:\n(A) {a0}\n(B) {a1}\n(C) {a2}\n(D) {a3}\n(E) {a4}\n.Answer with the option\'s letter from the given choices directly and only give the best option.' |
|
|
|
return { |
|
'q_uid': q_uid, |
|
'video': video_tensor, |
|
'question': option_question, |
|
} |
|
|
|
|
|
def build_egoschema_eval(args, processor, num_frames): |
|
questions = json.load(open(args.question_file, "r")) |
|
questions = get_chunk(questions, args.num_chunks, args.chunk_idx) |
|
dataset = EgoschemaDataset(questions, processor, num_segments=num_frames) |
|
dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers) |
|
|
|
return dataloader |
|
|
|
|
|
def egoschema_dump(ans_file, line, outputs): |
|
for idx, output in enumerate(outputs): |
|
q_uid = line['q_uid'][idx] |
|
letters = ['A', 'B', 'C', 'D', 'E'] |
|
|
|
pred_answer = re.findall('[\(\ ]*[A-E][\)\ ]*', output) |
|
if len(pred_answer) == 0: |
|
pred_idx = 2 |
|
else: |
|
pred_answer = pred_answer[0].strip() |
|
|
|
pred_answer = pred_answer.strip('()') |
|
pred_idx = letters.index(pred_answer) |
|
ans_file.write(f'{q_uid}, {pred_idx}\n') |
|
|
|
|
|
def get_model_output(model, video_tensor, tokenizer, questions, conv_mode="v1", device='cuda'): |
|
|
|
input_ids = [] |
|
modal_list = [] |
|
for qs in questions: |
|
if model.config.mm_use_im_start_end: |
|
qs = default_mm_start_token + default_mm_token + default_mm_end_token + "\n" + qs |
|
else: |
|
qs = default_mm_token + "\n" + qs |
|
|
|
conv = conv_templates[conv_mode].copy() |
|
conv.append_message(conv.roles[0], qs) |
|
conv.append_message(conv.roles[1], None) |
|
prompt = conv.get_prompt() |
|
|
|
input_id = tokenizer_MMODAL_token(prompt, tokenizer, modal_token_index, return_tensors='pt') |
|
input_ids.append(input_id) |
|
modal_list.append("video") |
|
|
|
|
|
input_ids = torch.nn.utils.rnn.pad_sequence( |
|
[x.flip(dims=[0]) for x in input_ids], |
|
batch_first=True, |
|
padding_value=tokenizer.pad_token_id).flip(dims=[1]).to(device) |
|
|
|
attention_mask=input_ids.ne(tokenizer.pad_token_id).to(device) |
|
|
|
video_tensor = video_tensor.half().to(args.device) |
|
|
|
with torch.inference_mode(): |
|
output_ids = model.generate( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
images_or_videos=video_tensor, |
|
modal_list=modal_list, |
|
do_sample=False, |
|
max_new_tokens=1024, |
|
use_cache=True, |
|
pad_token_id=tokenizer.eos_token_id) |
|
|
|
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True) |
|
return outputs |
|
|
|
|
|
def run_inference(args): |
|
""" |
|
Run inference on ActivityNet QA DataSet using the Video-ChatGPT model. |
|
|
|
Args: |
|
args: Command-line arguments. |
|
""" |
|
|
|
model_name = get_model_name_from_path(args.model_path) |
|
tokenizer, model, processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name) |
|
|
|
num_frames = model.config.num_frames if hasattr(model.config, "num_frames") else NUM_FRAMES |
|
|
|
answer_file = os.path.expanduser(args.answer_file) |
|
os.makedirs(os.path.dirname(answer_file), exist_ok=True) |
|
ans_file = open(answer_file, "w") |
|
|
|
output_list = [] |
|
|
|
if args.dataset == 'mvbench': |
|
val_loader = build_mvbench_eval(args, processor, num_frames) |
|
elif args.dataset == 'nextoe': |
|
val_loader = build_nextoe_eval(args, processor, num_frames) |
|
elif args.dataset == 'nextqa': |
|
val_loader = build_nextqa_eval(args, processor, num_frames) |
|
elif args.dataset == 'egoschema': |
|
val_loader = build_egoschema_eval(args, processor, num_frames) |
|
else: |
|
raise NotImplementedError(f"Dataset {args.dataset} not implemented.") |
|
|
|
|
|
for i, line in enumerate(tqdm(val_loader)): |
|
video_tensor = line['video'] |
|
questions = line['question'] |
|
|
|
outputs = get_model_output(model, video_tensor, tokenizer, questions, args.conv_mode, args.device) |
|
|
|
if args.dataset == 'mvbench': |
|
mvbench_dump(ans_file, line, outputs) |
|
elif args.dataset == 'nextoe': |
|
nextoe_dump(ans_file, line, outputs) |
|
elif args.dataset == 'nextqa': |
|
nextqa_dump(ans_file, line, outputs) |
|
elif args.dataset == 'egoschema': |
|
egoschema_dump(ans_file, line, outputs) |
|
else: |
|
raise NotImplementedError(f"Dataset {args.dataset} not implemented.") |
|
|
|
ans_file.close() |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description='Multiple-Choice Video QA Evaluation Script.') |
|
|
|
parser.add_argument('--dataset', help='Dataset to evaluate on.', required=True) |
|
parser.add_argument('--model-path', help='', required=True) |
|
parser.add_argument('--model_base', help='', default=None, type=str, required=False) |
|
parser.add_argument('--video-folder', help='Directory containing video files.', required=True) |
|
parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True) |
|
parser.add_argument('--answer-file', help='Path to the ground truth file containing answers.', required=True) |
|
parser.add_argument("--conv-mode", type=str, default="llava_v1") |
|
parser.add_argument("--num-chunks", type=int, default=1) |
|
parser.add_argument("--chunk-idx", type=int, default=0) |
|
parser.add_argument("--device", type=str, required=False, default='cuda:0') |
|
parser.add_argument("--model_max_length", type=int, required=False, default=2048) |
|
parser.add_argument("--batch-size", type=int, default=1) |
|
parser.add_argument("--num-workers", type=int, default=8) |
|
args = parser.parse_args() |
|
run_inference(args) |
|
|