|
from datasets import load_dataset |
|
from transformers import AutoTokenizer, DataCollatorWithPadding |
|
from torch.utils.data import DataLoader |
|
from transformers import AutoModelForSequenceClassification |
|
from transformers import AdamW |
|
from transformers import get_scheduler |
|
import torch |
|
from tqdm.auto import tqdm |
|
import evaluate |
|
|
|
raw_datasets = load_dataset("glue","mrpc") |
|
checkpoint = 'bert-base-cased' |
|
tokenizer = AutoTokenizer.from_pretrained(checkpoint) |
|
|
|
def tokenize_function(example): |
|
return tokenizer(example['sentence1'], example['sentence2'], truncation=True) |
|
|
|
tokenized_dataset = raw_datasets.map(tokenize_function, batched=True) |
|
tokenized_dataset = tokenized_dataset.remove_columns(['sentence1', 'sentence2','idx']) |
|
tokenized_dataset = tokenized_dataset.rename_column('label','labels') |
|
|
|
|
|
tokenized_dataset.set_format('torch') |
|
|
|
|
|
data_collator = DataCollatorWithPadding(tokenizer) |
|
|
|
train_dataloader = DataLoader( |
|
tokenized_dataset['validation'], batch_size=8, collate_fn=data_collator |
|
) |
|
|
|
eval_dataloader = DataLoader( |
|
tokenized_dataset['validation'], batch_size=8, collate_fn=data_collator |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2) |
|
|
|
|
|
|
|
|
|
optimizer = AdamW(model.parameters(), lr=5e-5) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
num_epochs = 3 |
|
num_training_steps = num_epochs * len(train_dataloader) |
|
lr_scheduler = get_scheduler( |
|
'linear', |
|
optimizer=optimizer, |
|
num_warmup_steps=0, |
|
num_training_steps=num_training_steps |
|
) |
|
|
|
device = torch.device('mps') if torch.backends.mps.is_available() else torch.device('cpu') |
|
model.to(device) |
|
print(f'Using device: {device}') |
|
|
|
progress_bar = tqdm(range(num_training_steps)) |
|
|
|
model.train() |
|
for epoch in range(num_epochs): |
|
for batch in train_dataloader: |
|
batch = {k: v.to(device) for k, v in batch.items()} |
|
outputs = model(**batch) |
|
loss = outputs.loss |
|
loss.backward() |
|
|
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad() |
|
progress_bar.update(1) |
|
|
|
metric= evaluate.load('glue','mrpc') |
|
model.eval() |
|
for batch in eval_dataloader: |
|
batch = {k: v.to(device) for k, v in batch.items()} |
|
with torch.no_grad(): |
|
outputs = model(**batch) |
|
|
|
logits = outputs.logits |
|
predictions = torch.argmax(logits, dim=-1) |
|
metric.add_batch(predictions=predictions, references=batch['labels']) |
|
|
|
result = metric.compute() |
|
print(result) |
|
|
|
save_dir = "/Users/alexandr/Desktop/HUGGING_FACE/model" |
|
|
|
model.save_pretrained(save_dir) |
|
tokenizer.save_pretrained(save_dir) |
|
|
|
print(f"model and tokenizer saved to {save_dir}") |
|
|