File size: 19,875 Bytes
c838d44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
import copy
from dataclasses import dataclass
import math
from safetensors.torch import load_model
import torch
from torch import nn
from transformers.modeling_utils import ModuleUtilsMixin, PretrainedConfig, PreTrainedModel
from transformers.modeling_outputs import ModelOutput
from transformers.models.t5.configuration_t5 import T5Config
from transformers.models.t5.modeling_t5 import (
    T5LayerNorm,
    T5DenseGatedActDense,
)
from typing import Optional

###
# Code from from PiotrNawrot/nanoT5/nanoT5/utils/t5_model.py

@dataclass
class EncoderOutput(ModelOutput):
    hidden_states: torch.FloatTensor = None
    attention_mask: torch.FloatTensor = None


@dataclass
class Seq2SeqLMOutput(ModelOutput):
    loss: torch.FloatTensor = None
    logits: torch.FloatTensor = None
    encoder_outputs: EncoderOutput = None


class T5LayerFF(nn.Module):
    def __init__(self, config: T5Config):
        super().__init__()
        assert config.is_gated_act
        self.DenseReluDense = T5DenseGatedActDense(config)
        self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
        self.dropout = nn.Dropout(config.dropout_rate)

    def forward(self, hidden_states):
        forwarded_states = self.layer_norm(hidden_states).type_as(hidden_states)
        forwarded_states = self.DenseReluDense(forwarded_states)
        hidden_states = hidden_states + self.dropout(forwarded_states)
        return hidden_states


class T5Attention(nn.Module):
    def __init__(self, config: T5Config, has_relative_attention_bias=False):
        super().__init__()
        self.is_decoder = config.is_decoder
        self.has_relative_attention_bias = has_relative_attention_bias
        self.relative_attention_num_buckets = config.relative_attention_num_buckets
        self.relative_attention_max_distance = config.relative_attention_max_distance
        self.d_model = config.d_model
        self.key_value_proj_dim = config.d_kv
        self.n_heads = config.num_heads
        self.dropout = config.dropout_rate
        self.inner_dim = self.n_heads * self.key_value_proj_dim

        self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
        self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
        self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
        self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)

        if self.has_relative_attention_bias:
            self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)

    @staticmethod
    def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
        """
        Adapted from Mesh Tensorflow:
        https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593

        Translate relative position to a bucket number for relative attention. The relative position is defined as
        memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
        position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
        small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
        positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
        This should allow for more graceful generalization to longer sequences than the model has been trained on

        Args:
            relative_position: an int32 Tensor
            bidirectional: a boolean - whether the attention is bidirectional
            num_buckets: an integer
            max_distance: an integer

        Returns:
            a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
        """
        relative_buckets = 0
        if bidirectional:
            num_buckets //= 2
            relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
            relative_position = torch.abs(relative_position)
        else:
            relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
        # now relative_position is in the range [0, inf)

        # half of the buckets are for exact increments in positions
        max_exact = num_buckets // 2
        is_small = relative_position < max_exact

        # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
        relative_position_if_large = max_exact + (
                torch.log(relative_position.float() / max_exact)
                / math.log(max_distance / max_exact)
                * (num_buckets - max_exact)
        ).to(torch.long)
        relative_position_if_large = torch.min(
            relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
        )

        relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
        return relative_buckets

    def compute_bias(self, query_length, key_length, device=None):
        """Compute binned relative position bias"""
        if device is None:
            device = self.relative_attention_bias.weight.device
        context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
        memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
        relative_position = memory_position - context_position  # shape (query_length, key_length)
        relative_position_bucket = self._relative_position_bucket(
            relative_position,  # shape (query_length, key_length)
            bidirectional=(not self.is_decoder),
            num_buckets=self.relative_attention_num_buckets,
            max_distance=self.relative_attention_max_distance,
        )
        values = self.relative_attention_bias(relative_position_bucket)  # shape (query_length, key_length, num_heads)
        values = values.permute([2, 0, 1]).unsqueeze(0)  # shape (1, num_heads, query_length, key_length)
        return values

    def forward(
            self,
            hidden_states,
            mask=None,
            key_value_states=None,
            position_bias=None,
    ):
        """
        Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
        """
        # Input is (batch_size, seq_length, dim)
        # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
        batch_size, seq_length = hidden_states.shape[:2]
        real_seq_length = seq_length
        key_length = real_seq_length if key_value_states is None else key_value_states.shape[1]

        def shape(states):
            """projection"""
            return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)

        def unshape(states):
            """reshape"""
            return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)

        query_states = self.q(hidden_states)
        if key_value_states is None:
            key_states, value_states = self.k(hidden_states), self.v(hidden_states)
        else:
            key_states, value_states = self.k(key_value_states), self.v(key_value_states)
        query_states, key_states, value_states = shape(query_states), shape(key_states), shape(value_states)

        scores = torch.matmul(
            query_states, key_states.transpose(3, 2)
        )  # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9

        if position_bias is None:
            if not self.has_relative_attention_bias:
                position_bias = torch.zeros(
                    (1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype
                )
            else:
                position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device)

            if mask is not None:
                # Masking happens here, masked elements in the mask have the value of -inf
                position_bias = position_bias + mask  # (batch_size, n_heads, seq_length, key_length)

        position_bias_masked = position_bias

        scores += position_bias_masked
        attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(
            scores
        )  # (batch_size, n_heads, seq_length, key_length)
        attn_weights = nn.functional.dropout(
            attn_weights, p=self.dropout, training=self.training
        )  # (batch_size, n_heads, seq_length, key_length)

        attn_output = unshape(torch.matmul(attn_weights, value_states))  # (batch_size, seq_length, dim)
        attn_output = self.o(attn_output)

        return (attn_output, position_bias)


class T5LayerSelfAttention(nn.Module):
    def __init__(self, config, has_relative_attention_bias=False):
        super().__init__()
        self.SelfAttention = T5Attention(config, has_relative_attention_bias=has_relative_attention_bias)
        self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
        self.dropout = nn.Dropout(config.dropout_rate)

    def forward(
            self,
            hidden_states,
            attention_mask=None,
            position_bias=None,
    ):
        normed_hidden_states = self.layer_norm(hidden_states).type_as(hidden_states)
        attention_output = self.SelfAttention(
            normed_hidden_states,
            mask=attention_mask,
            position_bias=position_bias,
        )
        hidden_states = hidden_states + self.dropout(attention_output[0])
        outputs = (hidden_states,) + attention_output[1:]
        return outputs


class T5LayerCrossAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.EncDecAttention = T5Attention(config, has_relative_attention_bias=False)
        self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
        self.dropout = nn.Dropout(config.dropout_rate)

    def forward(
            self,
            hidden_states,
            key_value_states,
            attention_mask=None,
            position_bias=None,
    ):
        normed_hidden_states = self.layer_norm(hidden_states)
        attention_output = self.EncDecAttention(
            normed_hidden_states,
            mask=attention_mask,
            key_value_states=key_value_states,
            position_bias=position_bias,
        )
        layer_output = hidden_states + self.dropout(attention_output[0])
        outputs = (layer_output,) + attention_output[1:]
        return outputs


class T5Block(nn.Module):
    def __init__(self, config, has_relative_attention_bias=False):
        super().__init__()
        self.is_decoder = config.is_decoder
        self.layer = nn.ModuleList()
        self.layer.append(T5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias))
        if self.is_decoder:
            self.layer.append(T5LayerCrossAttention(config))

        self.layer.append(T5LayerFF(config))

    def forward(
            self,
            hidden_states,
            attention_mask=None,
            position_bias=None,
            encoder_hidden_states=None,
            encoder_attention_mask=None,
            encoder_decoder_position_bias=None,
    ):
        self_attention_outputs = self.layer[0](
            hidden_states,
            attention_mask=attention_mask,
            position_bias=position_bias,
        )
        hidden_states = self_attention_outputs[0]
        attention_outputs = self_attention_outputs[1:]  # Relative position weights

        if self.is_decoder and encoder_hidden_states is not None:
            cross_attention_outputs = self.layer[1](
                hidden_states,
                key_value_states=encoder_hidden_states,
                attention_mask=encoder_attention_mask,
                position_bias=encoder_decoder_position_bias,
            )
            hidden_states = cross_attention_outputs[0]

            # Keep relative position weights
            attention_outputs = attention_outputs + cross_attention_outputs[1:]

        # Apply Feed Forward layer
        hidden_states = self.layer[-1](hidden_states)

        outputs = (hidden_states,)
        outputs = outputs + attention_outputs

        return outputs  # hidden-states, (self-attention position bias), (cross-attention position bias)


class T5Stack(nn.Module, ModuleUtilsMixin):
    def __init__(self, config, embed_tokens):
        super().__init__()
        assert embed_tokens is not None

        self.config = config
        self.embed_tokens = embed_tokens
        self.is_decoder = config.is_decoder

        self.block = nn.ModuleList(
            [T5Block(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)]
        )

        self.final_layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
        self.dropout = nn.Dropout(config.dropout_rate)

    def forward(
            self,
            input_ids=None,
            attention_mask=None,
            encoder_hidden_states=None,
            encoder_attention_mask=None,
    ) -> EncoderOutput:
        input_shape = input_ids.size()
        batch_size, seq_length = input_shape

        inputs_embeds = self.embed_tokens(input_ids)

        if hasattr(self.config, 'is_bf16') and self.config.is_bf16:
            inputs_embeds = inputs_embeds.to(torch.bfloat16)

        # Masking
        if attention_mask is None:
            attention_mask = torch.ones(batch_size, seq_length, device=inputs_embeds.device)

        if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None:
            encoder_seq_length = encoder_hidden_states.shape[1]
            encoder_attention_mask = torch.ones(
                batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.long
            )

        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)

        # If a 2D or 3D attention mask is provided for the cross-attention
        # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
        if self.is_decoder and encoder_hidden_states is not None:
            encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
            encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
            if encoder_attention_mask is None:
                encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device)
            encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
        else:
            encoder_extended_attention_mask = None

        position_bias = None
        encoder_decoder_position_bias = None

        hidden_states = self.dropout(inputs_embeds)

        for _, layer_module in enumerate(self.block):
            layer_outputs = layer_module(
                hidden_states,
                attention_mask=extended_attention_mask,
                position_bias=position_bias,
                encoder_hidden_states=encoder_hidden_states,
                encoder_attention_mask=encoder_extended_attention_mask,
                encoder_decoder_position_bias=encoder_decoder_position_bias,
            )
            hidden_states = layer_outputs[0]

            # We share the position biases between the layers - the first layer store them
            position_bias = layer_outputs[1]
            if self.is_decoder and encoder_hidden_states is not None:
                encoder_decoder_position_bias = layer_outputs[2]

        hidden_states = self.final_layer_norm(hidden_states).type_as(hidden_states)
        hidden_states = self.dropout(hidden_states)

        return EncoderOutput(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
        )


###
# Code from huggingface/twodgirl
# License: apache-2.0

class T5EncoderModel(nn.Module):
    def __init__(self, config: T5Config):
        super().__init__()
        config.is_encoder_decoder = False
        assert not config.tie_word_embeddings
        self.config = config
        self.model_dim = config.d_model
        self.shared = nn.Embedding(config.vocab_size, config.d_model)
        encoder_config = copy.deepcopy(config)
        encoder_config.is_decoder = False
        self.encoder = T5Stack(encoder_config, self.shared)
        flux_dev_d_model = 4096
        self.last_layer = nn.Sequential(
            nn.Linear(config.d_model, flux_dev_d_model),
            nn.ReLU(),
            nn.Linear(flux_dev_d_model, flux_dev_d_model)
        )
        self.apply(self._init_weights)

    def forward(
            self,
            input_ids: Optional[torch.LongTensor] = None,
            attention_mask: Optional[torch.FloatTensor] = None
    ):
        encoder_outputs = self.encoder(
            input_ids=input_ids,
            attention_mask=attention_mask,
        )

        return self.last_layer(encoder_outputs.hidden_states)

    def get_input_embeddings(self):
        return self.shared

    def _init_weights(self, module):
        factor = self.config.initializer_factor  # Used for testing weights initialization
        if isinstance(module, T5LayerNorm):
            module.weight.data.fill_(factor * 1.0)
        elif isinstance(module, T5EncoderModel):
            module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0)
            if hasattr(module, "lm_head") and not self.config.tie_word_embeddings:
                module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0)
        elif isinstance(module, T5DenseGatedActDense):
            d_ff, d_model = module.wi_0.weight.data.size()
            module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
            module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
            module.wo.weight.data.normal_(mean=0.0, std=factor * ((d_ff) ** -0.5))
        elif isinstance(module, T5Attention):
            d_model = self.config.d_model
            key_value_proj_dim = self.config.d_kv
            n_heads = self.config.num_heads
            module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5))
            module.k.weight.data.normal_(mean=0.0, std=factor * (d_model ** -0.5))
            module.v.weight.data.normal_(mean=0.0, std=factor * (d_model ** -0.5))
            module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
            if hasattr(module, "relative_attention_bias"):
                module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))

class PretrainedTextEncoder(PreTrainedModel):
    # Call by:
    # t5 = PretrainedTextEncoder(t5_config, T5EncoderModel(t5_config)).to(dtype=torch.float16)
    # t5.load_model('text_encoder_2.safetensors')
    # ...
    # FluxPipeline.from_pretrained(..., text_encoder_2=t5)
    def __init__(self, config, model):
        super().__init__(config, model)
        self.model = model

    def load_model(self, filepath):
        load_model(self.model, filepath)

    def forward(self, x, output_hidden_states=False):
        return self.model(x),

t5_config = T5Config(d_model=4096 // 2,
                     dd_ff=10240 // 2,
                     num_layers=2,
                     num_heads=32,
                     is_gated_act=True,
                     tie_word_embeddings=False,
                     max_seq_len=512)