--- base_model: Dongwei/DeepSeek-R1-Distill-Qwen-7B-GRPO_Math datasets: DigitalLearningGmbH/MATH-lighteval library_name: transformers model_name: DeepSeek-R1-Distill-Qwen-7B-GRPO_Math tags: - generated_from_trainer - open-r1 - trl - grpo - mlx - mlx-my-repo licence: license --- # About: **This GRPO trained model is a fine-tuned version of **[**__deepseek-ai/DeepSeek-R1-Distill-Qwen-7B__**](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B)** on the **[**__DigitalLearningGmbH/MATH-lighteval__**](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval)** dataset.** GRPO is applied after a distilled R1 model is created to further refine its reasoning capabilities. Rather than the initial distillation step—which transfers capacities from a larger model—GRPO uses reinforcement learning to optimize the policy model by maximizing a reward signal. This fine-tuning step is distinct from distillation and aims to boost performance in chain-of-thought and reasoning tasks. *Special thanks to Dongwei for fine-tuning this version of DeepSeek-R1-Distill-Qwen-7B. More information about it can be found here:* [https://huggingface.co/Dongwei/DeepSeek-R1-Distill-Qwen-7B-GRPO_Math](https://huggingface.co/Dongwei/DeepSeek-R1-Distill-Qwen-7B-GRPO_Math) - Converted to MLX format with a quantization of 4-bit for better performance on Apple Silicon Macs (M1,M2,M3,M4 Chips). # Notes: - Seems to brush over the "thinking" process and immediately start answering, leading to extremely quick but correct answers. ## Other Types: | Link | Type | Size| Notes | |-------|-----------|-----------|-----------| | [MLX] (https://huggingface.co/AlejandroOlmedo/DeepSeek-R1-Distill-Qwen-7B-GRPO_Math-8bit-mlx) | 8-bit | 8.10 GB | **Best Quality** | | [MLX] (https://huggingface.co/AlejandroOlmedo/DeepSeek-R1-Distill-Qwen-7B-GRPO_Math-4bit-mlx) | 4-bit | 4.30 GB | Good Quality| # AlejandroOlmedo/DeepSeek-R1-Distill-Qwen-7B-GRPO_Math-4bit-mlx The Model [AlejandroOlmedo/DeepSeek-R1-Distill-Qwen-7B-GRPO_Math-4bit-mlx](https://huggingface.co/AlejandroOlmedo/DeepSeek-R1-Distill-Qwen-7B-GRPO_Math-4bit-mlx) was converted to MLX format from [Dongwei/DeepSeek-R1-Distill-Qwen-7B-GRPO_Math](https://huggingface.co/Dongwei/DeepSeek-R1-Distill-Qwen-7B-GRPO_Math) using mlx-lm version **0.20.5**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("AlejandroOlmedo/DeepSeek-R1-Distill-Qwen-7B-GRPO_Math-4bit-mlx") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```