File size: 1,585 Bytes
1d028d4 4466f60 fecb65a 4466f60 fecb65a 099fc9a 8f178c4 dfdc80c 1d028d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
license: mit
library_name: transformers
datasets:
- AI-MO/NuminaMath-CoT
- KbsdJames/Omni-MATH
- RUC-AIBOX/STILL-3-Preview-RL-Data
- hendrycks/competition_math
language:
- en
base_model: agentica-org/DeepScaleR-1.5B-Preview
tags:
- mlx
---
# About:
**A fine-tuned version of Deepseek-R1-Distilled-Qwen-1.5B that surpasses the performance of OpenAI’s o1-preview with just 1.5B parameters on popular math evaluations.**
*Special thanks to Agentica for fine-tuning this version of Deepseek-R1-Distilled-Qwen-1.5B. More information about it can be found here: https://huggingface.co/agentica-org/DeepScaleR-1.5B-Preview.*
I simply converted it to MLX format for better performance on Apple Silicon Macs (M1,M2,M3,M4 Chips).
# Alejandroolmedo/DeepScaleR-1.5B-Preview-Q8-mlx
The Model [Alejandroolmedo/DeepScaleR-1.5B-Preview-Q8-mlx](https://huggingface.co/Alejandroolmedo/DeepScaleR-1.5B-Preview-Q8-mlx) was converted to MLX format from [agentica-org/DeepScaleR-1.5B-Preview](https://huggingface.co/agentica-org/DeepScaleR-1.5B-Preview) using mlx-lm version **0.20.5**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("Alejandroolmedo/DeepScaleR-1.5B-Preview-Q8-mlx")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|