File size: 2,562 Bytes
6349453
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74cc77c
6349453
 
74cc77c
6349453
 
74cc77c
6349453
 
74cc77c
6349453
 
 
 
 
 
 
 
 
74cc77c
 
 
 
 
6349453
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74cc77c
6349453
 
 
 
 
74cc77c
 
 
 
 
6349453
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
library_name: transformers
base_model: dccuchile/bert-base-spanish-wwm-cased
tags:
- generated_from_trainer
datasets:
- biobert_json
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: beto-finetuned-ner
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: biobert_json
      type: biobert_json
      config: Biobert_json
      split: validation
      args: Biobert_json
    metrics:
    - name: Precision
      type: precision
      value: 0.9479897894065092
    - name: Recall
      type: recall
      value: 0.9685937839600087
    - name: F1
      type: f1
      value: 0.9581810363362717
    - name: Accuracy
      type: accuracy
      value: 0.9781675579322638
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# beto-finetuned-ner

This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) on the biobert_json dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1032
- Precision: 0.9480
- Recall: 0.9686
- F1: 0.9582
- Accuracy: 0.9782

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.3605        | 1.0   | 612  | 0.1104          | 0.9414    | 0.9462 | 0.9438 | 0.9707   |
| 0.1106        | 2.0   | 1224 | 0.1074          | 0.9306    | 0.9707 | 0.9502 | 0.9742   |
| 0.0786        | 3.0   | 1836 | 0.0983          | 0.9460    | 0.9688 | 0.9573 | 0.9776   |
| 0.0596        | 4.0   | 2448 | 0.1017          | 0.9465    | 0.9703 | 0.9583 | 0.9780   |
| 0.0387        | 5.0   | 3060 | 0.1032          | 0.9480    | 0.9686 | 0.9582 | 0.9782   |


### Framework versions

- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3