AkshaySandbox commited on
Commit
dc9e156
·
verified ·
1 Parent(s): 10feec9

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,409 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:1602
8
+ - loss:CosineSimilarityLoss
9
+ base_model: sentence-transformers/all-mpnet-base-v2
10
+ widget:
11
+ - source_sentence: What should be preserved for the child/youth in adoption proceedings?
12
+ sentences:
13
+ - Street drugs can put you and your baby at very serious risk.
14
+ - The Canadian Council on Social Determinants of Health identified the factors that
15
+ may facilitate the call for intersectoral action.
16
+ - Yes, this chart is specific to boys.
17
+ - source_sentence: When should an adoption order not be recommended?
18
+ sentences:
19
+ - You can use a light cover to cover yourself and the baby when breastfeeding in
20
+ public.
21
+ - The specific areas of development affected include physical health and well-being,
22
+ language and cognitive development, and communication skills and general knowledge.
23
+ - Only the consents of the child’s/youth’s adoptive parent(s) and the child/youth
24
+ 12 years of age or over are required.
25
+ - source_sentence: What can I do if I'm struggling to cope with my baby's crying?
26
+ sentences:
27
+ - Try taking some deep breaths and counting to 10, leaving the room for a few minutes,
28
+ calling a friend or relative for help, or waiting until you're calm to try comforting
29
+ your baby again. It's also recommended to talk to your partner about how you can
30
+ help each other.
31
+ - The Hague Convention is an international treaty that sets standards to ensure
32
+ that the best interests of children and youth are protected.
33
+ - In Figure 1, an age transformation of age0.35 is used.
34
+ - source_sentence: What percentage of women are contacted by a healthcare provider
35
+ at home after giving birth?
36
+ sentences:
37
+ - You should call your health care provider or HealthLink BC at 8-1-1 if the lump
38
+ doesn’t go away in a couple of days.
39
+ - The father's consent for adoption can be taken at any time following the birth
40
+ of the child.
41
+ - 93% of women are contacted by a healthcare provider at home after giving birth.
42
+ - source_sentence: What is anthropometric measurement?
43
+ sentences:
44
+ - The Canadian Institute of Child Health is an organization that conducts research
45
+ and provides information related to child health and development in Canada.
46
+ - Anthropometric measurement refers to the systematic measurement of the physical
47
+ properties of the body, primarily dimensional descriptors of body size and shape.
48
+ - The effectiveness of the contraceptive patch may be impacted if you are taking
49
+ other medicines.
50
+ pipeline_tag: sentence-similarity
51
+ library_name: sentence-transformers
52
+ metrics:
53
+ - pearson_cosine
54
+ - spearman_cosine
55
+ model-index:
56
+ - name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
57
+ results:
58
+ - task:
59
+ type: semantic-similarity
60
+ name: Semantic Similarity
61
+ dataset:
62
+ name: pregnancy val
63
+ type: pregnancy_val
64
+ metrics:
65
+ - type: pearson_cosine
66
+ value: 0.9589667173266213
67
+ name: Pearson Cosine
68
+ - type: spearman_cosine
69
+ value: 0.8644529580476511
70
+ name: Spearman Cosine
71
+ - type: pearson_cosine
72
+ value: 0.9589667173266213
73
+ name: Pearson Cosine
74
+ - type: spearman_cosine
75
+ value: 0.8644529580476511
76
+ name: Spearman Cosine
77
+ ---
78
+
79
+ # SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
80
+
81
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
82
+
83
+ ## Model Details
84
+
85
+ ### Model Description
86
+ - **Model Type:** Sentence Transformer
87
+ - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 9a3225965996d404b775526de6dbfe85d3368642 -->
88
+ - **Maximum Sequence Length:** 384 tokens
89
+ - **Output Dimensionality:** 768 dimensions
90
+ - **Similarity Function:** Cosine Similarity
91
+ <!-- - **Training Dataset:** Unknown -->
92
+ <!-- - **Language:** Unknown -->
93
+ <!-- - **License:** Unknown -->
94
+
95
+ ### Model Sources
96
+
97
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
98
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
99
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
100
+
101
+ ### Full Model Architecture
102
+
103
+ ```
104
+ SentenceTransformer(
105
+ (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
106
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
107
+ (2): Normalize()
108
+ )
109
+ ```
110
+
111
+ ## Usage
112
+
113
+ ### Direct Usage (Sentence Transformers)
114
+
115
+ First install the Sentence Transformers library:
116
+
117
+ ```bash
118
+ pip install -U sentence-transformers
119
+ ```
120
+
121
+ Then you can load this model and run inference.
122
+ ```python
123
+ from sentence_transformers import SentenceTransformer
124
+
125
+ # Download from the 🤗 Hub
126
+ model = SentenceTransformer("AkshaySandbox/pregnancy-mpnet-embeddings")
127
+ # Run inference
128
+ sentences = [
129
+ 'What is anthropometric measurement?',
130
+ 'Anthropometric measurement refers to the systematic measurement of the physical properties of the body, primarily dimensional descriptors of body size and shape.',
131
+ 'The effectiveness of the contraceptive patch may be impacted if you are taking other medicines.',
132
+ ]
133
+ embeddings = model.encode(sentences)
134
+ print(embeddings.shape)
135
+ # [3, 768]
136
+
137
+ # Get the similarity scores for the embeddings
138
+ similarities = model.similarity(embeddings, embeddings)
139
+ print(similarities.shape)
140
+ # [3, 3]
141
+ ```
142
+
143
+ <!--
144
+ ### Direct Usage (Transformers)
145
+
146
+ <details><summary>Click to see the direct usage in Transformers</summary>
147
+
148
+ </details>
149
+ -->
150
+
151
+ <!--
152
+ ### Downstream Usage (Sentence Transformers)
153
+
154
+ You can finetune this model on your own dataset.
155
+
156
+ <details><summary>Click to expand</summary>
157
+
158
+ </details>
159
+ -->
160
+
161
+ <!--
162
+ ### Out-of-Scope Use
163
+
164
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
165
+ -->
166
+
167
+ ## Evaluation
168
+
169
+ ### Metrics
170
+
171
+ #### Semantic Similarity
172
+
173
+ * Dataset: `pregnancy_val`
174
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
175
+
176
+ | Metric | Value |
177
+ |:--------------------|:-----------|
178
+ | pearson_cosine | 0.959 |
179
+ | **spearman_cosine** | **0.8645** |
180
+
181
+ #### Semantic Similarity
182
+
183
+ * Dataset: `pregnancy_val`
184
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
185
+
186
+ | Metric | Value |
187
+ |:--------------------|:-----------|
188
+ | pearson_cosine | 0.959 |
189
+ | **spearman_cosine** | **0.8645** |
190
+
191
+ <!--
192
+ ## Bias, Risks and Limitations
193
+
194
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
195
+ -->
196
+
197
+ <!--
198
+ ### Recommendations
199
+
200
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
201
+ -->
202
+
203
+ ## Training Details
204
+
205
+ ### Training Dataset
206
+
207
+ #### Unnamed Dataset
208
+
209
+ * Size: 1,602 training samples
210
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
211
+ * Approximate statistics based on the first 1000 samples:
212
+ | | sentence_0 | sentence_1 | label |
213
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
214
+ | type | string | string | float |
215
+ | details | <ul><li>min: 7 tokens</li><li>mean: 16.02 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 28.37 tokens</li><li>max: 92 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.48</li><li>max: 1.0</li></ul> |
216
+ * Samples:
217
+ | sentence_0 | sentence_1 | label |
218
+ |:---------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
219
+ | <code>Who should I consult if I have more than 1 alcoholic drink per day, smoke, use cannabis or take street drugs?</code> | <code>In Newfoundland and Labrador, the standards outline a scope of practice, set out minimum expectations in terms of content and hours of study, as well as qualifications for faculty, demonstration sites, and practicum placements.</code> | <code>0.0</code> |
220
+ | <code>Do I need to provide a copy of the report to anyone?</code> | <code>Yes, the Adoption Act in British Columbia provides the birth parents with the option to place their child directly with known prospective adoptive parents.</code> | <code>0.0</code> |
221
+ | <code>What is the composition of the communities of practice created by some PTs in Canada?</code> | <code>You can keep the stroller safe by not putting your purse or heavy packages on the handle.</code> | <code>0.0</code> |
222
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
223
+ ```json
224
+ {
225
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
226
+ }
227
+ ```
228
+
229
+ ### Training Hyperparameters
230
+ #### Non-Default Hyperparameters
231
+
232
+ - `eval_strategy`: steps
233
+ - `per_device_train_batch_size`: 16
234
+ - `per_device_eval_batch_size`: 16
235
+ - `multi_dataset_batch_sampler`: round_robin
236
+
237
+ #### All Hyperparameters
238
+ <details><summary>Click to expand</summary>
239
+
240
+ - `overwrite_output_dir`: False
241
+ - `do_predict`: False
242
+ - `eval_strategy`: steps
243
+ - `prediction_loss_only`: True
244
+ - `per_device_train_batch_size`: 16
245
+ - `per_device_eval_batch_size`: 16
246
+ - `per_gpu_train_batch_size`: None
247
+ - `per_gpu_eval_batch_size`: None
248
+ - `gradient_accumulation_steps`: 1
249
+ - `eval_accumulation_steps`: None
250
+ - `torch_empty_cache_steps`: None
251
+ - `learning_rate`: 5e-05
252
+ - `weight_decay`: 0.0
253
+ - `adam_beta1`: 0.9
254
+ - `adam_beta2`: 0.999
255
+ - `adam_epsilon`: 1e-08
256
+ - `max_grad_norm`: 1
257
+ - `num_train_epochs`: 3
258
+ - `max_steps`: -1
259
+ - `lr_scheduler_type`: linear
260
+ - `lr_scheduler_kwargs`: {}
261
+ - `warmup_ratio`: 0.0
262
+ - `warmup_steps`: 0
263
+ - `log_level`: passive
264
+ - `log_level_replica`: warning
265
+ - `log_on_each_node`: True
266
+ - `logging_nan_inf_filter`: True
267
+ - `save_safetensors`: True
268
+ - `save_on_each_node`: False
269
+ - `save_only_model`: False
270
+ - `restore_callback_states_from_checkpoint`: False
271
+ - `no_cuda`: False
272
+ - `use_cpu`: False
273
+ - `use_mps_device`: False
274
+ - `seed`: 42
275
+ - `data_seed`: None
276
+ - `jit_mode_eval`: False
277
+ - `use_ipex`: False
278
+ - `bf16`: False
279
+ - `fp16`: False
280
+ - `fp16_opt_level`: O1
281
+ - `half_precision_backend`: auto
282
+ - `bf16_full_eval`: False
283
+ - `fp16_full_eval`: False
284
+ - `tf32`: None
285
+ - `local_rank`: 0
286
+ - `ddp_backend`: None
287
+ - `tpu_num_cores`: None
288
+ - `tpu_metrics_debug`: False
289
+ - `debug`: []
290
+ - `dataloader_drop_last`: False
291
+ - `dataloader_num_workers`: 0
292
+ - `dataloader_prefetch_factor`: None
293
+ - `past_index`: -1
294
+ - `disable_tqdm`: False
295
+ - `remove_unused_columns`: True
296
+ - `label_names`: None
297
+ - `load_best_model_at_end`: False
298
+ - `ignore_data_skip`: False
299
+ - `fsdp`: []
300
+ - `fsdp_min_num_params`: 0
301
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
302
+ - `fsdp_transformer_layer_cls_to_wrap`: None
303
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
304
+ - `deepspeed`: None
305
+ - `label_smoothing_factor`: 0.0
306
+ - `optim`: adamw_torch
307
+ - `optim_args`: None
308
+ - `adafactor`: False
309
+ - `group_by_length`: False
310
+ - `length_column_name`: length
311
+ - `ddp_find_unused_parameters`: None
312
+ - `ddp_bucket_cap_mb`: None
313
+ - `ddp_broadcast_buffers`: False
314
+ - `dataloader_pin_memory`: True
315
+ - `dataloader_persistent_workers`: False
316
+ - `skip_memory_metrics`: True
317
+ - `use_legacy_prediction_loop`: False
318
+ - `push_to_hub`: False
319
+ - `resume_from_checkpoint`: None
320
+ - `hub_model_id`: None
321
+ - `hub_strategy`: every_save
322
+ - `hub_private_repo`: None
323
+ - `hub_always_push`: False
324
+ - `gradient_checkpointing`: False
325
+ - `gradient_checkpointing_kwargs`: None
326
+ - `include_inputs_for_metrics`: False
327
+ - `include_for_metrics`: []
328
+ - `eval_do_concat_batches`: True
329
+ - `fp16_backend`: auto
330
+ - `push_to_hub_model_id`: None
331
+ - `push_to_hub_organization`: None
332
+ - `mp_parameters`:
333
+ - `auto_find_batch_size`: False
334
+ - `full_determinism`: False
335
+ - `torchdynamo`: None
336
+ - `ray_scope`: last
337
+ - `ddp_timeout`: 1800
338
+ - `torch_compile`: False
339
+ - `torch_compile_backend`: None
340
+ - `torch_compile_mode`: None
341
+ - `dispatch_batches`: None
342
+ - `split_batches`: None
343
+ - `include_tokens_per_second`: False
344
+ - `include_num_input_tokens_seen`: False
345
+ - `neftune_noise_alpha`: None
346
+ - `optim_target_modules`: None
347
+ - `batch_eval_metrics`: False
348
+ - `eval_on_start`: False
349
+ - `use_liger_kernel`: False
350
+ - `eval_use_gather_object`: False
351
+ - `average_tokens_across_devices`: False
352
+ - `prompts`: None
353
+ - `batch_sampler`: batch_sampler
354
+ - `multi_dataset_batch_sampler`: round_robin
355
+
356
+ </details>
357
+
358
+ ### Training Logs
359
+ | Epoch | Step | pregnancy_val_spearman_cosine |
360
+ |:-----:|:----:|:-----------------------------:|
361
+ | 1.0 | 101 | 0.8647 |
362
+ | 2.0 | 202 | 0.8647 |
363
+ | 3.0 | 303 | 0.8645 |
364
+ | -1 | -1 | 0.8645 |
365
+
366
+
367
+ ### Framework Versions
368
+ - Python: 3.13.1
369
+ - Sentence Transformers: 3.4.1
370
+ - Transformers: 4.49.0
371
+ - PyTorch: 2.6.0
372
+ - Accelerate: 1.4.0
373
+ - Datasets: 3.3.2
374
+ - Tokenizers: 0.21.0
375
+
376
+ ## Citation
377
+
378
+ ### BibTeX
379
+
380
+ #### Sentence Transformers
381
+ ```bibtex
382
+ @inproceedings{reimers-2019-sentence-bert,
383
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
384
+ author = "Reimers, Nils and Gurevych, Iryna",
385
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
386
+ month = "11",
387
+ year = "2019",
388
+ publisher = "Association for Computational Linguistics",
389
+ url = "https://arxiv.org/abs/1908.10084",
390
+ }
391
+ ```
392
+
393
+ <!--
394
+ ## Glossary
395
+
396
+ *Clearly define terms in order to be accessible across audiences.*
397
+ -->
398
+
399
+ <!--
400
+ ## Model Card Authors
401
+
402
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
403
+ -->
404
+
405
+ <!--
406
+ ## Model Card Contact
407
+
408
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
409
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.49.0",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.49.0",
5
+ "pytorch": "2.6.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8bb9b631c3030c46581f36387fc0b31be99a8773a0a91c0fc455d7c232b115c1
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": false,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "extra_special_tokens": {},
58
+ "mask_token": "<mask>",
59
+ "max_length": 128,
60
+ "model_max_length": 384,
61
+ "pad_to_multiple_of": null,
62
+ "pad_token": "<pad>",
63
+ "pad_token_type_id": 0,
64
+ "padding_side": "right",
65
+ "sep_token": "</s>",
66
+ "stride": 0,
67
+ "strip_accents": null,
68
+ "tokenize_chinese_chars": true,
69
+ "tokenizer_class": "MPNetTokenizer",
70
+ "truncation_side": "right",
71
+ "truncation_strategy": "longest_first",
72
+ "unk_token": "[UNK]"
73
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff