AhmedZaky1 commited on
Commit
a703542
·
verified ·
1 Parent(s): 6bcaa89

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +221 -550
README.md CHANGED
@@ -15,28 +15,22 @@ widget:
15
  - source_sentence: الرجل يركب حصاناً
16
  sentences:
17
  - رجل يُبث الجبن الممزق على البيتزا
18
- - ar-ar
19
- - رجل يركب حصاناً
20
  - source_sentence: المرأة تقلي لحم خنزير مشوي
21
  sentences:
22
- - ar-ar
23
  - امرأة تطبخ لحم خنزير مخبوز
24
  - طائرة طيران تقلع
25
  - source_sentence: امرأة تحمل في ذراعها طفل كنغر
26
  sentences:
27
  - امرأة تعزف على الغيتار
28
- - ar-ar
29
  - امرأة تحمل و تحمل طفل كنغر
30
  - source_sentence: رجل يعزف على الناي
31
  sentences:
32
  - طائرة ستقلع
33
- - ar-ar
34
  - رجل يعزف على فرقة الخيزران
35
  - source_sentence: ثلاثة رجال يلعبون الشطرنج.
36
  sentences:
37
  - رجلين يلعبان الشطرنج
38
  - بعض الرجال يقاتلون
39
- - ar-ar
40
  datasets:
41
  - silma-ai/silma-arabic-english-sts-dataset-v1.0
42
  pipeline_tag: sentence-similarity
@@ -44,583 +38,260 @@ library_name: sentence-transformers
44
  metrics:
45
  - pearson_cosine
46
  - spearman_cosine
47
- model-index:
48
- - name: SentenceTransformer based on AhmedZaky1/DIMI-embedding-v2
49
- results:
50
- - task:
51
- type: semantic-similarity
52
- name: Semantic Similarity
53
- dataset:
54
- name: silma sts dev 768
55
- type: silma-sts-dev-768
56
- metrics:
57
- - type: pearson_cosine
58
- value: 0.8894298077237747
59
- name: Pearson Cosine
60
- - type: spearman_cosine
61
- value: 0.8357984695231979
62
- name: Spearman Cosine
63
- - task:
64
- type: semantic-similarity
65
- name: Semantic Similarity
66
- dataset:
67
- name: silma sts dev 512
68
- type: silma-sts-dev-512
69
- metrics:
70
- - type: pearson_cosine
71
- value: 0.8958835653694187
72
- name: Pearson Cosine
73
- - type: spearman_cosine
74
- value: 0.8394578198917563
75
- name: Spearman Cosine
76
- - task:
77
- type: semantic-similarity
78
- name: Semantic Similarity
79
- dataset:
80
- name: silma sts dev 256
81
- type: silma-sts-dev-256
82
- metrics:
83
- - type: pearson_cosine
84
- value: 0.9078743376141943
85
- name: Pearson Cosine
86
- - type: spearman_cosine
87
- value: 0.8470163055535588
88
- name: Spearman Cosine
89
- - task:
90
- type: semantic-similarity
91
- name: Semantic Similarity
92
- dataset:
93
- name: silma sts dev 128
94
- type: silma-sts-dev-128
95
- metrics:
96
- - type: pearson_cosine
97
- value: 0.9181556833949818
98
- name: Pearson Cosine
99
- - type: spearman_cosine
100
- value: 0.856188415278301
101
- name: Spearman Cosine
102
- - task:
103
- type: semantic-similarity
104
- name: Semantic Similarity
105
- dataset:
106
- name: silma sts dev 64
107
- type: silma-sts-dev-64
108
- metrics:
109
- - type: pearson_cosine
110
- value: 0.9066219844975816
111
- name: Pearson Cosine
112
- - type: spearman_cosine
113
- value: 0.8434430083292863
114
- name: Spearman Cosine
115
- - task:
116
- type: semantic-similarity
117
- name: Semantic Similarity
118
- dataset:
119
- name: sts17 ar test 768
120
- type: sts17-ar-test-768
121
- metrics:
122
- - type: pearson_cosine
123
- value: 0.8205269118955641
124
- name: Pearson Cosine
125
- - type: spearman_cosine
126
- value: 0.8258003312254673
127
- name: Spearman Cosine
128
- - task:
129
- type: semantic-similarity
130
- name: Semantic Similarity
131
- dataset:
132
- name: sts17 ar test 512
133
- type: sts17-ar-test-512
134
- metrics:
135
- - type: pearson_cosine
136
- value: 0.8193403796404517
137
- name: Pearson Cosine
138
- - type: spearman_cosine
139
- value: 0.8226611918447921
140
- name: Spearman Cosine
141
- - task:
142
- type: semantic-similarity
143
- name: Semantic Similarity
144
- dataset:
145
- name: sts17 ar test 256
146
- type: sts17-ar-test-256
147
- metrics:
148
- - type: pearson_cosine
149
- value: 0.8190666923783347
150
- name: Pearson Cosine
151
- - type: spearman_cosine
152
- value: 0.8245760514866052
153
- name: Spearman Cosine
154
- - task:
155
- type: semantic-similarity
156
- name: Semantic Similarity
157
- dataset:
158
- name: sts17 ar test 128
159
- type: sts17-ar-test-128
160
- metrics:
161
- - type: pearson_cosine
162
- value: 0.8114629254813825
163
- name: Pearson Cosine
164
- - type: spearman_cosine
165
- value: 0.8183273799928091
166
- name: Spearman Cosine
167
- - task:
168
- type: semantic-similarity
169
- name: Semantic Similarity
170
- dataset:
171
- name: sts17 ar test 64
172
- type: sts17-ar-test-64
173
- metrics:
174
- - type: pearson_cosine
175
- value: 0.796172574267003
176
- name: Pearson Cosine
177
- - type: spearman_cosine
178
- value: 0.8077141358495715
179
- name: Spearman Cosine
180
  ---
181
 
182
- # SentenceTransformer based on AhmedZaky1/DIMI-embedding-v2
183
 
184
- This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [AhmedZaky1/DIMI-embedding-v2](https://huggingface.co/AhmedZaky1/DIMI-embedding-v2) on the [silma-arabic-english-sts-dataset-v1.0](https://huggingface.co/datasets/silma-ai/silma-arabic-english-sts-dataset-v1.0) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
185
 
186
- ## Model Details
187
 
188
- ### Model Description
189
- - **Model Type:** Sentence Transformer
190
- - **Base model:** [AhmedZaky1/DIMI-embedding-v2](https://huggingface.co/AhmedZaky1/DIMI-embedding-v2) <!-- at revision d4a6e4faaea9d9a2ad374fea48b093946166e753 -->
191
- - **Maximum Sequence Length:** 8192 tokens
192
- - **Output Dimensionality:** 768 dimensions
193
- - **Similarity Function:** Cosine Similarity
194
- - **Training Dataset:**
195
- - [silma-arabic-english-sts-dataset-v1.0](https://huggingface.co/datasets/silma-ai/silma-arabic-english-sts-dataset-v1.0)
196
- - **Languages:** ar, en
197
- <!-- - **License:** Unknown -->
198
 
199
- ### Model Sources
200
 
201
- - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
202
- - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
203
- - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
204
 
205
- ### Full Model Architecture
 
 
206
 
207
- ```
208
- SentenceTransformer(
209
- (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
210
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
211
- (2): Normalize()
212
- )
213
- ```
214
 
215
- ## Usage
216
 
217
- ### Direct Usage (Sentence Transformers)
218
 
219
- First install the Sentence Transformers library:
220
 
221
- ```bash
222
- pip install -U sentence-transformers
223
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
224
 
225
- Then you can load this model and run inference.
226
  ```python
227
  from sentence_transformers import SentenceTransformer
228
 
229
- # Download from the 🤗 Hub
230
- model = SentenceTransformer("AhmedZaky1/DIMI-embedding-v2-silma-sts-matryoshka")
231
- # Run inference
 
232
  sentences = [
233
- 'ثلاثة رجال يلعبون الشطرنج.',
234
- 'رجلين يلعبان الشطرنج',
235
- 'ar-ar',
 
236
  ]
 
 
237
  embeddings = model.encode(sentences)
238
- print(embeddings.shape)
239
- # [3, 768]
240
 
241
- # Get the similarity scores for the embeddings
242
- similarities = model.similarity(embeddings, embeddings)
243
- print(similarities.shape)
244
- # [3, 3]
 
245
  ```
246
 
247
- <!--
248
- ### Direct Usage (Transformers)
249
-
250
- <details><summary>Click to see the direct usage in Transformers</summary>
251
-
252
- </details>
253
- -->
254
-
255
- <!--
256
- ### Downstream Usage (Sentence Transformers)
257
-
258
- You can finetune this model on your own dataset.
259
-
260
- <details><summary>Click to expand</summary>
261
-
262
- </details>
263
- -->
264
-
265
- <!--
266
- ### Out-of-Scope Use
267
-
268
- *List how the model may foreseeably be misused and address what users ought not to do with the model.*
269
- -->
270
-
271
- ## Evaluation
272
-
273
- ### Metrics
274
-
275
- #### Semantic Similarity
276
-
277
- * Datasets: `silma-sts-dev-768`, `silma-sts-dev-512`, `silma-sts-dev-256`, `silma-sts-dev-128`, `silma-sts-dev-64`, `sts17-ar-test-768`, `sts17-ar-test-512`, `sts17-ar-test-256`, `sts17-ar-test-128` and `sts17-ar-test-64`
278
- * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
279
-
280
- | Metric | silma-sts-dev-768 | silma-sts-dev-512 | silma-sts-dev-256 | silma-sts-dev-128 | silma-sts-dev-64 | sts17-ar-test-768 | sts17-ar-test-512 | sts17-ar-test-256 | sts17-ar-test-128 | sts17-ar-test-64 |
281
- |:--------------------|:------------------|:------------------|:------------------|:------------------|:-----------------|:------------------|:------------------|:------------------|:------------------|:-----------------|
282
- | pearson_cosine | 0.8894 | 0.8959 | 0.9079 | 0.9182 | 0.9066 | 0.8205 | 0.8193 | 0.8191 | 0.8115 | 0.7962 |
283
- | **spearman_cosine** | **0.8358** | **0.8395** | **0.847** | **0.8562** | **0.8434** | **0.8258** | **0.8227** | **0.8246** | **0.8183** | **0.8077** |
284
-
285
- <!--
286
- ## Bias, Risks and Limitations
287
-
288
- *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
289
- -->
290
-
291
- <!--
292
- ### Recommendations
293
-
294
- *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
295
- -->
296
-
297
- ## Training Details
298
-
299
- ### Training Dataset
300
-
301
- #### silma-arabic-english-sts-dataset-v1.0
302
-
303
- * Dataset: [silma-arabic-english-sts-dataset-v1.0](https://huggingface.co/datasets/silma-ai/silma-arabic-english-sts-dataset-v1.0) at [1885690](https://huggingface.co/datasets/silma-ai/silma-arabic-english-sts-dataset-v1.0/tree/18856908c58bc3779ad089ec327093c8761d2523)
304
- * Size: 34,436 training samples
305
- * Columns: <code>sentence1</code>, <code>sentence2</code>, <code>score</code>, and <code>langs</code>
306
- * Approximate statistics based on the first 1000 samples:
307
- | | sentence1 | sentence2 | score | langs |
308
- |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|:-------------------------------------------------------------------------------|
309
- | type | string | string | float | string |
310
- | details | <ul><li>min: 4 tokens</li><li>mean: 9.68 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.68 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 5.0 tokens</li><li>max: 5 tokens</li></ul> |
311
- * Samples:
312
- | sentence1 | sentence2 | score | langs |
313
- |:-----------------------------------|:-----------------------------------|:-----------------|:-------------------|
314
- | <code>رجل يعزف على البيانو</code> | <code>امرأة تعزف على الكمان</code> | <code>0.2</code> | <code>ar-ar</code> |
315
- | <code>امرأة تعزف على الكمان</code> | <code>رجل يعزف على البيانو</code> | <code>0.2</code> | <code>ar-ar</code> |
316
- | <code>امرأة تعزف على الناي.</code> | <code>رجل يعزف على الغيتار</code> | <code>0.2</code> | <code>ar-ar</code> |
317
- * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
318
- ```json
319
- {
320
- "loss": "CoSENTLoss",
321
- "matryoshka_dims": [
322
- 768,
323
- 512,
324
- 256,
325
- 128,
326
- 64
327
- ],
328
- "matryoshka_weights": [
329
- 1,
330
- 1,
331
- 1,
332
- 1,
333
- 1
334
- ],
335
- "n_dims_per_step": -1
336
- }
337
- ```
338
-
339
- ### Evaluation Dataset
340
-
341
- #### silma-arabic-english-sts-dataset-v1.0
342
-
343
- * Dataset: [silma-arabic-english-sts-dataset-v1.0](https://huggingface.co/datasets/silma-ai/silma-arabic-english-sts-dataset-v1.0) at [1885690](https://huggingface.co/datasets/silma-ai/silma-arabic-english-sts-dataset-v1.0/tree/18856908c58bc3779ad089ec327093c8761d2523)
344
- * Size: 100 evaluation samples
345
- * Columns: <code>sentence1</code>, <code>sentence2</code>, <code>score</code>, and <code>langs</code>
346
- * Approximate statistics based on the first 100 samples:
347
- | | sentence1 | sentence2 | score | langs |
348
- |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|:-------------------------------------------------------------------------------|
349
- | type | string | string | float | string |
350
- | details | <ul><li>min: 5 tokens</li><li>mean: 9.49 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.49 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 0.1</li><li>mean: 0.74</li><li>max: 1.0</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 5.0 tokens</li><li>max: 5 tokens</li></ul> |
351
- * Samples:
352
- | sentence1 | sentence2 | score | langs |
353
- |:-----------------------------------|:--------------------------------|:------------------|:-------------------|
354
- | <code>طائرة ستقلع</code> | <code>طائرة طيران تقلع</code> | <code>1.0</code> | <code>ar-ar</code> |
355
- | <code>طائرة طيران تقلع</code> | <code>طائرة ستقلع</code> | <code>1.0</code> | <code>ar-ar</code> |
356
- | <code>رجل يعزف على ناي كبير</code> | <code>رجل يعزف على الناي</code> | <code>0.76</code> | <code>ar-ar</code> |
357
- * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
358
- ```json
359
- {
360
- "loss": "CoSENTLoss",
361
- "matryoshka_dims": [
362
- 768,
363
- 512,
364
- 256,
365
- 128,
366
- 64
367
- ],
368
- "matryoshka_weights": [
369
- 1,
370
- 1,
371
- 1,
372
- 1,
373
- 1
374
- ],
375
- "n_dims_per_step": -1
376
- }
377
- ```
378
-
379
- ### Training Hyperparameters
380
- #### Non-Default Hyperparameters
381
-
382
- - `eval_strategy`: steps
383
- - `per_device_train_batch_size`: 16
384
- - `per_device_eval_batch_size`: 16
385
- - `num_train_epochs`: 4
386
- - `warmup_ratio`: 0.1
387
- - `save_only_model`: True
388
- - `fp16`: True
389
- - `load_best_model_at_end`: True
390
-
391
- #### All Hyperparameters
392
- <details><summary>Click to expand</summary>
393
-
394
- - `overwrite_output_dir`: False
395
- - `do_predict`: False
396
- - `eval_strategy`: steps
397
- - `prediction_loss_only`: True
398
- - `per_device_train_batch_size`: 16
399
- - `per_device_eval_batch_size`: 16
400
- - `per_gpu_train_batch_size`: None
401
- - `per_gpu_eval_batch_size`: None
402
- - `gradient_accumulation_steps`: 1
403
- - `eval_accumulation_steps`: None
404
- - `torch_empty_cache_steps`: None
405
- - `learning_rate`: 5e-05
406
- - `weight_decay`: 0.0
407
- - `adam_beta1`: 0.9
408
- - `adam_beta2`: 0.999
409
- - `adam_epsilon`: 1e-08
410
- - `max_grad_norm`: 1.0
411
- - `num_train_epochs`: 4
412
- - `max_steps`: -1
413
- - `lr_scheduler_type`: linear
414
- - `lr_scheduler_kwargs`: {}
415
- - `warmup_ratio`: 0.1
416
- - `warmup_steps`: 0
417
- - `log_level`: passive
418
- - `log_level_replica`: warning
419
- - `log_on_each_node`: True
420
- - `logging_nan_inf_filter`: True
421
- - `save_safetensors`: True
422
- - `save_on_each_node`: False
423
- - `save_only_model`: True
424
- - `restore_callback_states_from_checkpoint`: False
425
- - `no_cuda`: False
426
- - `use_cpu`: False
427
- - `use_mps_device`: False
428
- - `seed`: 42
429
- - `data_seed`: None
430
- - `jit_mode_eval`: False
431
- - `use_ipex`: False
432
- - `bf16`: False
433
- - `fp16`: True
434
- - `fp16_opt_level`: O1
435
- - `half_precision_backend`: auto
436
- - `bf16_full_eval`: False
437
- - `fp16_full_eval`: False
438
- - `tf32`: None
439
- - `local_rank`: 0
440
- - `ddp_backend`: None
441
- - `tpu_num_cores`: None
442
- - `tpu_metrics_debug`: False
443
- - `debug`: []
444
- - `dataloader_drop_last`: False
445
- - `dataloader_num_workers`: 0
446
- - `dataloader_prefetch_factor`: None
447
- - `past_index`: -1
448
- - `disable_tqdm`: False
449
- - `remove_unused_columns`: True
450
- - `label_names`: None
451
- - `load_best_model_at_end`: True
452
- - `ignore_data_skip`: False
453
- - `fsdp`: []
454
- - `fsdp_min_num_params`: 0
455
- - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
456
- - `tp_size`: 0
457
- - `fsdp_transformer_layer_cls_to_wrap`: None
458
- - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
459
- - `deepspeed`: None
460
- - `label_smoothing_factor`: 0.0
461
- - `optim`: adamw_torch
462
- - `optim_args`: None
463
- - `adafactor`: False
464
- - `group_by_length`: False
465
- - `length_column_name`: length
466
- - `ddp_find_unused_parameters`: None
467
- - `ddp_bucket_cap_mb`: None
468
- - `ddp_broadcast_buffers`: False
469
- - `dataloader_pin_memory`: True
470
- - `dataloader_persistent_workers`: False
471
- - `skip_memory_metrics`: True
472
- - `use_legacy_prediction_loop`: False
473
- - `push_to_hub`: False
474
- - `resume_from_checkpoint`: None
475
- - `hub_model_id`: None
476
- - `hub_strategy`: every_save
477
- - `hub_private_repo`: None
478
- - `hub_always_push`: False
479
- - `gradient_checkpointing`: False
480
- - `gradient_checkpointing_kwargs`: None
481
- - `include_inputs_for_metrics`: False
482
- - `include_for_metrics`: []
483
- - `eval_do_concat_batches`: True
484
- - `fp16_backend`: auto
485
- - `push_to_hub_model_id`: None
486
- - `push_to_hub_organization`: None
487
- - `mp_parameters`:
488
- - `auto_find_batch_size`: False
489
- - `full_determinism`: False
490
- - `torchdynamo`: None
491
- - `ray_scope`: last
492
- - `ddp_timeout`: 1800
493
- - `torch_compile`: False
494
- - `torch_compile_backend`: None
495
- - `torch_compile_mode`: None
496
- - `include_tokens_per_second`: False
497
- - `include_num_input_tokens_seen`: False
498
- - `neftune_noise_alpha`: None
499
- - `optim_target_modules`: None
500
- - `batch_eval_metrics`: False
501
- - `eval_on_start`: False
502
- - `use_liger_kernel`: False
503
- - `eval_use_gather_object`: False
504
- - `average_tokens_across_devices`: False
505
- - `prompts`: None
506
- - `batch_sampler`: batch_sampler
507
- - `multi_dataset_batch_sampler`: proportional
508
-
509
- </details>
510
-
511
- ### Training Logs
512
- | Epoch | Step | Training Loss | Validation Loss | silma-sts-dev-768_spearman_cosine | silma-sts-dev-512_spearman_cosine | silma-sts-dev-256_spearman_cosine | silma-sts-dev-128_spearman_cosine | silma-sts-dev-64_spearman_cosine | sts17-ar-test-768_spearman_cosine | sts17-ar-test-512_spearman_cosine | sts17-ar-test-256_spearman_cosine | sts17-ar-test-128_spearman_cosine | sts17-ar-test-64_spearman_cosine |
513
- |:----------:|:--------:|:-------------:|:---------------:|:---------------------------------:|:---------------------------------:|:---------------------------------:|:---------------------------------:|:--------------------------------:|:---------------------------------:|:---------------------------------:|:---------------------------------:|:---------------------------------:|:--------------------------------:|
514
- | 0.0929 | 100 | 39.5796 | 45.0982 | 0.7199 | 0.7173 | 0.7292 | 0.7433 | 0.7196 | - | - | - | - | - |
515
- | 0.1857 | 200 | 31.3305 | 29.9877 | 0.7233 | 0.7248 | 0.7344 | 0.7337 | 0.7192 | - | - | - | - | - |
516
- | 0.2786 | 300 | 27.7756 | 31.4644 | 0.7288 | 0.7268 | 0.7331 | 0.7388 | 0.7169 | - | - | - | - | - |
517
- | 0.3714 | 400 | 27.7405 | 33.3315 | 0.7172 | 0.7168 | 0.7341 | 0.7349 | 0.7219 | - | - | - | - | - |
518
- | 0.4643 | 500 | 27.1884 | 30.4957 | 0.7469 | 0.7428 | 0.7475 | 0.7547 | 0.7426 | - | - | - | - | - |
519
- | 0.5571 | 600 | 27.0428 | 29.5877 | 0.7133 | 0.7138 | 0.7380 | 0.7549 | 0.7533 | - | - | - | - | - |
520
- | 0.6500 | 700 | 26.7957 | 30.3813 | 0.7520 | 0.7430 | 0.7570 | 0.7604 | 0.7647 | - | - | - | - | - |
521
- | 0.7428 | 800 | 26.2667 | 30.6293 | 0.7323 | 0.7333 | 0.7558 | 0.7609 | 0.7479 | - | - | - | - | - |
522
- | 0.8357 | 900 | 25.9412 | 29.8621 | 0.7730 | 0.7732 | 0.7913 | 0.8117 | 0.7797 | - | - | - | - | - |
523
- | 0.9285 | 1000 | 25.7816 | 31.7315 | 0.7856 | 0.7918 | 0.7916 | 0.8025 | 0.8048 | - | - | - | - | - |
524
- | 1.0214 | 1100 | 25.1666 | 31.6311 | 0.7651 | 0.7668 | 0.7673 | 0.7826 | 0.7846 | - | - | - | - | - |
525
- | 1.1142 | 1200 | 24.7681 | 32.3005 | 0.7719 | 0.7892 | 0.7941 | 0.8022 | 0.7939 | - | - | - | - | - |
526
- | 1.2071 | 1300 | 24.8771 | 32.1761 | 0.7660 | 0.7744 | 0.7807 | 0.7884 | 0.7841 | - | - | - | - | - |
527
- | 1.2999 | 1400 | 24.9063 | 33.2694 | 0.7646 | 0.7644 | 0.7884 | 0.7906 | 0.7886 | - | - | - | - | - |
528
- | 1.3928 | 1500 | 24.7283 | 32.4350 | 0.7935 | 0.7974 | 0.8071 | 0.8112 | 0.8062 | - | - | - | - | - |
529
- | 1.4856 | 1600 | 24.4217 | 34.1219 | 0.7781 | 0.7754 | 0.7739 | 0.7916 | 0.7889 | - | - | - | - | - |
530
- | 1.5785 | 1700 | 24.4923 | 33.1239 | 0.7636 | 0.7709 | 0.7882 | 0.7991 | 0.7913 | - | - | - | - | - |
531
- | 1.6713 | 1800 | 24.0844 | 33.5233 | 0.7785 | 0.7832 | 0.7880 | 0.7977 | 0.8014 | - | - | - | - | - |
532
- | 1.7642 | 1900 | 24.1453 | 35.4602 | 0.7795 | 0.7816 | 0.8053 | 0.8115 | 0.7944 | - | - | - | - | - |
533
- | 1.8570 | 2000 | 24.2271 | 36.2812 | 0.8003 | 0.8009 | 0.8008 | 0.8102 | 0.8009 | - | - | - | - | - |
534
- | 1.9499 | 2100 | 23.7371 | 37.0276 | 0.7769 | 0.7866 | 0.7918 | 0.7926 | 0.7832 | - | - | - | - | - |
535
- | 2.0427 | 2200 | 23.3566 | 34.5721 | 0.7931 | 0.8017 | 0.8020 | 0.8159 | 0.8027 | - | - | - | - | - |
536
- | 2.1356 | 2300 | 23.2523 | 35.5316 | 0.7931 | 0.7981 | 0.7896 | 0.8157 | 0.8142 | - | - | - | - | - |
537
- | 2.2284 | 2400 | 23.0447 | 36.6811 | 0.7973 | 0.7962 | 0.7935 | 0.8030 | 0.8037 | - | - | - | - | - |
538
- | 2.3213 | 2500 | 22.9782 | 37.5482 | 0.8121 | 0.8185 | 0.8200 | 0.8293 | 0.8244 | - | - | - | - | - |
539
- | 2.4141 | 2600 | 22.9119 | 37.2809 | 0.8077 | 0.8116 | 0.8113 | 0.8333 | 0.8151 | - | - | - | - | - |
540
- | 2.5070 | 2700 | 23.1302 | 37.7993 | 0.8255 | 0.8304 | 0.8310 | 0.8376 | 0.8303 | - | - | - | - | - |
541
- | 2.5998 | 2800 | 22.9941 | 38.8005 | 0.8182 | 0.8214 | 0.8143 | 0.8193 | 0.8155 | - | - | - | - | - |
542
- | 2.6927 | 2900 | 22.8876 | 36.2524 | 0.8201 | 0.8222 | 0.8194 | 0.8347 | 0.8260 | - | - | - | - | - |
543
- | 2.7855 | 3000 | 22.5304 | 38.1523 | 0.8195 | 0.8280 | 0.8356 | 0.8545 | 0.8394 | - | - | - | - | - |
544
- | 2.8784 | 3100 | 22.446 | 39.4876 | 0.8242 | 0.8246 | 0.8319 | 0.8483 | 0.8397 | - | - | - | - | - |
545
- | 2.9712 | 3200 | 22.5077 | 39.1910 | 0.8231 | 0.8249 | 0.8334 | 0.8475 | 0.8372 | - | - | - | - | - |
546
- | **3.0641** | **3300** | **21.9675** | **36.4245** | **0.8408** | **0.8425** | **0.8456** | **0.8619** | **0.8577** | **-** | **-** | **-** | **-** | **-** |
547
- | 3.1569 | 3400 | 21.9361 | 36.7119 | 0.8344 | 0.8405 | 0.8460 | 0.8656 | 0.8644 | - | - | - | - | - |
548
- | 3.2498 | 3500 | 21.7747 | 37.7140 | 0.8279 | 0.8353 | 0.8414 | 0.8510 | 0.8446 | - | - | - | - | - |
549
- | 3.3426 | 3600 | 21.8649 | 38.9102 | 0.8298 | 0.8331 | 0.8456 | 0.8494 | 0.8447 | - | - | - | - | - |
550
- | 3.4355 | 3700 | 21.794 | 37.4385 | 0.8278 | 0.8328 | 0.8377 | 0.8442 | 0.8373 | - | - | - | - | - |
551
- | 3.5283 | 3800 | 21.7968 | 37.0225 | 0.8352 | 0.8501 | 0.8540 | 0.8722 | 0.8553 | - | - | - | - | - |
552
- | 3.6212 | 3900 | 21.5941 | 37.5736 | 0.8344 | 0.8515 | 0.8511 | 0.8643 | 0.8587 | - | - | - | - | - |
553
- | 3.7140 | 4000 | 21.8181 | 37.4984 | 0.8340 | 0.8440 | 0.8470 | 0.8607 | 0.8484 | - | - | - | - | - |
554
- | 3.8069 | 4100 | 21.7035 | 37.9701 | 0.8346 | 0.8394 | 0.8436 | 0.8615 | 0.8479 | - | - | - | - | - |
555
- | 3.8997 | 4200 | 21.398 | 38.1567 | 0.8349 | 0.8365 | 0.8470 | 0.8572 | 0.8405 | - | - | - | - | - |
556
- | 3.9926 | 4300 | 21.6518 | 38.3515 | 0.8358 | 0.8395 | 0.8470 | 0.8562 | 0.8434 | - | - | - | - | - |
557
- | 4.0 | 4308 | - | - | - | - | - | - | - | 0.8258 | 0.8227 | 0.8246 | 0.8183 | 0.8077 |
558
-
559
- * The bold row denotes the saved checkpoint.
560
-
561
- ### Framework Versions
562
- - Python: 3.12.7
563
- - Sentence Transformers: 3.3.1
564
- - Transformers: 4.51.3
565
- - PyTorch: 2.6.0+cu124
566
- - Accelerate: 1.4.0
567
- - Datasets: 3.3.2
568
- - Tokenizers: 0.21.1
569
-
570
- ## Citation
571
-
572
- ### BibTeX
573
-
574
- #### Sentence Transformers
575
- ```bibtex
576
- @inproceedings{reimers-2019-sentence-bert,
577
- title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
578
- author = "Reimers, Nils and Gurevych, Iryna",
579
- booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
580
- month = "11",
581
- year = "2019",
582
- publisher = "Association for Computational Linguistics",
583
- url = "https://arxiv.org/abs/1908.10084",
584
- }
585
  ```
586
 
587
- #### MatryoshkaLoss
588
- ```bibtex
589
- @misc{kusupati2024matryoshka,
590
- title={Matryoshka Representation Learning},
591
- author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
592
- year={2024},
593
- eprint={2205.13147},
594
- archivePrefix={arXiv},
595
- primaryClass={cs.LG}
596
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597
  ```
598
 
599
- #### CoSENTLoss
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
600
  ```bibtex
601
- @online{kexuefm-8847,
602
- title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
603
- author={Su Jianlin},
604
- year={2022},
605
- month={Jan},
606
- url={https://kexue.fm/archives/8847},
607
  }
608
  ```
609
 
610
- <!--
611
- ## Glossary
 
 
 
 
 
 
 
612
 
613
- *Clearly define terms in order to be accessible across audiences.*
614
- -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
615
 
616
- <!--
617
- ## Model Card Authors
618
 
619
- *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
620
- -->
621
 
622
- <!--
623
- ## Model Card Contact
624
 
625
- *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
626
- -->
 
15
  - source_sentence: الرجل يركب حصاناً
16
  sentences:
17
  - رجل يُبث الجبن الممزق على البيتزا
 
 
18
  - source_sentence: المرأة تقلي لحم خنزير مشوي
19
  sentences:
 
20
  - امرأة تطبخ لحم خنزير مخبوز
21
  - طائرة طيران تقلع
22
  - source_sentence: امرأة تحمل في ذراعها طفل كنغر
23
  sentences:
24
  - امرأة تعزف على الغيتار
 
25
  - امرأة تحمل و تحمل طفل كنغر
26
  - source_sentence: رجل يعزف على الناي
27
  sentences:
28
  - طائرة ستقلع
 
29
  - رجل يعزف على فرقة الخيزران
30
  - source_sentence: ثلاثة رجال يلعبون الشطرنج.
31
  sentences:
32
  - رجلين يلعبان الشطرنج
33
  - بعض الرجال يقاتلون
 
34
  datasets:
35
  - silma-ai/silma-arabic-english-sts-dataset-v1.0
36
  pipeline_tag: sentence-similarity
 
38
  metrics:
39
  - pearson_cosine
40
  - spearman_cosine
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
  ---
42
 
 
43
 
44
+ # DIMI Embedding model
45
 
46
+ <div align="center">
47
 
48
+ ![DIMI Logo]
 
 
 
 
 
 
 
 
 
49
 
50
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/65fb3ac20cfe262da2bb0fcc/i8PSS4Q4HufI-DG5hyyQw.jpeg)
51
 
52
+ *State-of-the-art Multilingual Sentence Embeddings for Arabic-English Semantic Similarity*
 
 
53
 
54
+ [![Hugging Face](https://img.shields.io/badge/🤗%20Hugging%20Face-Model-yellow)](https://huggingface.co/AhmedZaky1/DIMI-embedding-v3-silma-sts-matryoshka)
55
+ [![License](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT)
56
+ [![Python](https://img.shields.io/badge/Python-3.8+-green.svg)](https://python.org)
57
 
58
+ </div>
 
 
 
 
 
 
59
 
60
+ ## 🚀 Model Description
61
 
62
+ **DIMI-embedding-v3-silma-sts-matryoshka** is a cutting-edge multilingual sentence embedding model specifically fine-tuned for Arabic-English semantic textual similarity tasks. Built upon the robust DIMI-embedding-v2 architecture, this model leverages **Matryoshka Representation Learning** combined with **CoSENT Loss** to deliver exceptional performance across multiple embedding dimensions.
63
 
64
+ ### Key Features
65
 
66
+ - **Multi-dimensional embeddings**: Supports output dimensions of 768, 512, 256, 128, and 64
67
+ - **Bilingual expertise**: Optimized for Arabic and English text processing
68
+ - **Matryoshka architecture**: Efficient embedding computation at multiple granularities
69
+ - **State-of-the-art performance**: Fine-tuned on the comprehensive Silma Arabic-English STS dataset
70
+ - **Cosine similarity optimized**: Perfect for semantic similarity and retrieval tasks
71
+
72
+ ## 📊 Model Performance
73
+
74
+ The model demonstrates exceptional performance across different embedding dimensions:
75
+
76
+ ### Training Techniques
77
+
78
+ This model was trained using advanced techniques for optimal performance:
79
+
80
+ - **Matryoshka Representation Learning**: Enables efficient embeddings at multiple dimensions [768, 512, 256, 128, 64] without retraining
81
+ - **CoSENT Loss Function**: Cosine-based sentence embedding loss for superior semantic similarity learning
82
+ - **Multi-dimensional Evaluation**: Simultaneous optimization across all target dimensions during training
83
+ - **Mixed Precision Training (FP16)**: Accelerated training with maintained numerical stability
84
+ - **Warmup Learning Rate Schedule**: Gradual learning rate increase for stable convergence
85
+ - **Best Model Selection**: Automatic selection based on highest Spearman correlation on 768d embeddings
86
+
87
+ ### Final Model Performance
88
+
89
+ #### Development Set Results (Silma STS Dataset)
90
+ Final evaluation on the held-out development set:
91
+
92
+ | Dimension | Pearson Correlation | Spearman Correlation |
93
+ |-----------|-------------------|---------------------|
94
+ | 768d | 0.8894 | 0.8358 |
95
+ | 512d | 0.8959 | 0.8395 |
96
+ | 256d | 0.8979 | 0.8470 |
97
+ | 128d | 0.9182 | 0.8562 |
98
+ | 64d | 0.9066 | 0.8434 |
99
+
100
+ #### MTEB STS17 Arabic Test Results
101
+ Performance on the standard MTEB STS17 (ar-ar) benchmark:
102
+
103
+ | Dimension | Pearson Correlation | Spearman Correlation |
104
+ |-----------|-------------------|---------------------|
105
+ | **768d** | **0.8205** | **0.8258** |
106
+ | **512d** | **0.8193** | **0.8227** |
107
+ | **256d** | **0.8191** | **0.8246** |
108
+ | **128d** | **0.8115** | **0.8183** |
109
+ | **64d** | **0.7962** | **0.8077** |
110
+
111
+ **Sequential Score**: 0.8077 (based on 64d performance)
112
+
113
+ ## 🔧 Usage
114
+
115
+ ### Basic Usage
116
 
 
117
  ```python
118
  from sentence_transformers import SentenceTransformer
119
 
120
+ # Load the model
121
+ model = SentenceTransformer('AhmedZaky1/DIMI-embedding-v3-silma-sts-matryoshka')
122
+
123
+ # Example sentences in Arabic and English
124
  sentences = [
125
+ "هذا مثال جميل للذكاء الاصطناعي", # Arabic
126
+ "This is a beautiful example of artificial intelligence", # English
127
+ "التعلم الآلي يغير العالم", # Arabic
128
+ "Machine learning is changing the world" # English
129
  ]
130
+
131
+ # Generate embeddings
132
  embeddings = model.encode(sentences)
133
+ print(f"Embedding shape: {embeddings.shape}")
 
134
 
135
+ # Calculate cosine similarity
136
+ from sklearn.metrics.pairwise import cosine_similarity
137
+ similarity_matrix = cosine_similarity(embeddings)
138
+ print("Similarity matrix:")
139
+ print(similarity_matrix)
140
  ```
141
 
142
+ ### Matryoshka Embeddings Usage
143
+
144
+ ```python
145
+ # Use different embedding dimensions
146
+ dimensions = [768, 512, 256, 128, 64]
147
+
148
+ for dim in dimensions:
149
+ # Truncate embeddings to specific dimension
150
+ truncated_embeddings = embeddings[:, :dim]
151
+ print(f"Dimension {dim}: {truncated_embeddings.shape}")
152
+
153
+ # Calculate similarity with truncated embeddings
154
+ similarity = cosine_similarity(truncated_embeddings)
155
+ print(f"Average similarity at {dim}d: {similarity.mean():.4f}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
156
  ```
157
 
158
+ ### Semantic Search Example
159
+
160
+ ```python
161
+ import numpy as np
162
+
163
+ # Query and corpus
164
+ query = "ما هو الذكاء الاصطناعي؟" # "What is artificial intelligence?"
165
+ corpus = [
166
+ "الذكاء الاصطناعي هو محاكاة الذكاء البشري",
167
+ "Machine learning is a subset of AI",
168
+ "Deep learning uses neural networks",
169
+ "التعلم العميق يستخدم الشبكات العصبية"
170
+ ]
171
+
172
+ # Encode query and corpus
173
+ query_embedding = model.encode([query])
174
+ corpus_embeddings = model.encode(corpus)
175
+
176
+ # Find most similar documents
177
+ similarities = cosine_similarity(query_embedding, corpus_embeddings)[0]
178
+ top_indices = np.argsort(similarities)[::-1]
179
+
180
+ print(f"Query: {query}")
181
+ print("\nMost similar documents:")
182
+ for i, idx in enumerate(top_indices[:3]):
183
+ print(f"{i+1}. {corpus[idx]} (similarity: {similarities[idx]:.4f})")
184
  ```
185
 
186
+ ## 🏗️ Model Architecture
187
+
188
+ - **Base Model**: DIMI-embedding-v2
189
+ - **Training Objective**: CoSENT Loss with Matryoshka Learning
190
+ - **Supported Dimensions**: [768, 512, 256, 128, 64]
191
+ - **Max Sequence Length**: 512 tokens
192
+ - **Pooling Method**: Mean pooling
193
+ - **Similarity Function**: Cosine similarity
194
+
195
+ ## 📊 Training Details
196
+
197
+ ### Dataset
198
+ - **Primary Dataset**: silma-ai/silma-arabic-english-sts-dataset-v1.0
199
+ - **Evaluation Dataset**: MTEB STS17 (ar-ar)
200
+ - **Training Samples**: ~24,000+ multilingual sentence pairs
201
+ - **Evaluation Samples**: 100 held-out pairs
202
+
203
+ ### Training Configuration
204
+ - **Batch Size**: 16
205
+ - **Epochs**: 4
206
+ - **Learning Rate**: Warmup ratio 0.1
207
+ - **Precision**: FP16
208
+ - **Evaluation Strategy**: Every 100 steps
209
+ - **Best Model Selection**: Highest Spearman correlation on 768d embeddings
210
+
211
+ ### Hardware Requirements
212
+ - **GPU**: CUDA-compatible GPU recommended
213
+ - **Memory**: 16GB+ RAM for training
214
+ - **Storage**: 2GB+ for model weights
215
+
216
+ ## 🎯 Applications
217
+
218
+ This model excels in various NLP tasks:
219
+
220
+ - **Semantic Textual Similarity**: Measure similarity between Arabic-English text pairs
221
+ - **Information Retrieval**: Find relevant documents in multilingual corpora
222
+ - **Paraphrase Detection**: Identify semantically equivalent sentences
223
+ - **Cross-lingual Search**: Search Arabic content with English queries and vice versa
224
+ - **Clustering**: Group similar multilingual documents
225
+ - **Recommendation Systems**: Content-based recommendations across languages
226
+
227
+ ## ⚖️ Limitations and Bias
228
+
229
+ - Primarily optimized for Arabic and English; performance on other languages may vary
230
+ - Performance may degrade on domain-specific technical terminology
231
+ - Potential cultural and linguistic biases inherited from training data
232
+ - Best performance achieved with sentence-level inputs rather than single words
233
+
234
+ ## 📝 Citation
235
+
236
+ If you use this model in your research, please cite:
237
+
238
  ```bibtex
239
+ @misc{dimi-embedding-v3-2024,
240
+ title={DIMI-embedding-v3-silma-sts-matryoshka: Multilingual Sentence Embeddings for Arabic-English Semantic Similarity},
241
+ author={Ahmed Zaky},
242
+ year={2024},
243
+ publisher={Hugging Face},
244
+ url={https://huggingface.co/AhmedZaky1/DIMI-embedding-v3-silma-sts-matryoshka}
245
  }
246
  ```
247
 
248
+ ## 📧 Contact
249
+
250
+ **Author**: Ahmed Zaky
251
+ **Email**: [email protected]
252
+ **GitHub**: [@AhmedZaky1](https://github.com/AhmedZaky1)
253
+
254
+ ## 📄 License
255
+
256
+ This model is released under the **MIT License**.
257
 
258
+ ```
259
+ MIT License
260
+
261
+ Copyright (c) 2024 Ahmed Zaky
262
+
263
+ Permission is hereby granted, free of charge, to any person obtaining a copy
264
+ of this software and associated documentation files (the "Software"), to deal
265
+ in the Software without restriction, including without limitation the rights
266
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
267
+ copies of the Software, and to permit persons to whom the Software is
268
+ furnished to do so, subject to the following conditions:
269
+
270
+ The above copyright notice and this permission notice shall be included in all
271
+ copies or substantial portions of the Software.
272
+
273
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
274
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
275
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
276
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
277
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
278
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
279
+ SOFTWARE.
280
+ ```
281
+
282
+ ## 🙏 Acknowledgments
283
+
284
+ - **Silma AI** for providing the high-quality Arabic-English STS dataset
285
+ - **Sentence Transformers** library for the excellent framework
286
+ - **Hugging Face** for model hosting and distribution
287
+ - The **MTEB** benchmark for evaluation standards
288
+
289
+ ---
290
 
291
+ <div align="center">
 
292
 
293
+ **Built with ❤️ by Ahmed Zaky**
 
294
 
295
+ *Advancing Arabic NLP through state-of-the-art embedding models*
 
296
 
297
+ </div>