--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-large tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: answerdotai-ModernBERT-large-finetuned results: [] --- # answerdotai-ModernBERT-large-finetuned This model is a fine-tuned version of [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0153 - Accuracy: 0.9980 - Precision: 0.9980 - Recall: 0.9980 - F1: 0.9980 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.1905207188250686e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.0046 | 1.0 | 3011 | 0.0257 | 0.9962 | 0.9962 | 0.9962 | 0.9962 | | 0.021 | 2.0 | 6022 | 0.0234 | 0.9959 | 0.9960 | 0.9959 | 0.9960 | | 0.0001 | 3.0 | 9033 | 0.0194 | 0.9979 | 0.9978 | 0.9979 | 0.9978 | | 0.0002 | 4.0 | 12044 | 0.0181 | 0.9979 | 0.9978 | 0.9979 | 0.9978 | | 0.0 | 5.0 | 15055 | 0.0177 | 0.9980 | 0.9980 | 0.9980 | 0.9980 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0