AdaptLLM commited on
Commit
64e5ace
·
verified ·
1 Parent(s): 1e5c5ed

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -12
README.md CHANGED
@@ -6,9 +6,6 @@ language:
6
 
7
  This repository provides an implementation preview of our paper: [On Domain-Specific Post-Training for Multimodal Large Language Models](https://huggingface.co/papers/2411.19930).
8
 
9
- Our code will be available at [https://github.com/bigai-ai/QA-Synthesizer](https://github.com/bigai-ai/QA-Synthesizer)
10
-
11
-
12
  We investigate domain adaptation of MLLMs through post-training, focusing on data synthesis, training pipelines, and task evaluation.
13
  **(1) Data Synthesis**: Using open-source models, we develop a visual instruction synthesizer that effectively generates diverse visual instruction tasks from domain-specific image-caption pairs. **Our synthetic tasks surpass those generated by manual rules, GPT-4, and GPT-4V in enhancing the domain-specific performance of MLLMs.**
14
  **(2) Training Pipeline**: While the two-stage training--initially on image-caption pairs followed by visual instruction tasks--is commonly adopted for developing general MLLMs, we apply a single-stage training pipeline to enhance task diversity for domain-specific post-training.
@@ -25,12 +22,7 @@ We investigate domain adaptation of MLLMs through post-training, focusing on dat
25
 
26
 
27
  ***************** **Updates** ********************
28
- - [2024/12/11] Released [food visual instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) for post-training MLLMs
29
- - [2024/12/10] Released evaluation benchmark datasets for biomedicine and food domains: [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark), [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark).
30
- - [2024/12/9] Released AdaMLLM developed from llava-next-llama3-8b: [AdaMLLM-med-8B](https://huggingface.co/AdaptLLM/biomed-LLaVA-NeXT-Llama3-8B), [AdaMLLM-food-8B](https://huggingface.co/AdaptLLM/food-LLaVA-NeXT-Llama3-8B).
31
- - [2024/12/7] Released [visual-instruction-synthesizer](https://huggingface.co/AdaptLLM/visual-instruction-synthesizer) used to synthesize task triplets based on image-caption pairs.
32
- - [2024/12/6] Released AdaMLLM developed from Qwen2-VL-2B and Llama-3.2-11B-Vision: [AdaMLLM-med-2B](https://huggingface.co/AdaptLLM/biomed-Qwen2-VL-2B-Instruct), [AdaMLLM-food-2B](https://huggingface.co/AdaptLLM/food-Qwen2-VL-2B-Instruct), [AdaMLLM-med-11B](https://huggingface.co/AdaptLLM/biomed-Llama-3.2-11B-Vision-Instruct), [AdaMLLM-food-11B](https://huggingface.co/AdaptLLM/food-Llama-3.2-11B-Vision-Instruct),
33
- - [2024/12/05] Released [biomedicine visual instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) for post-training MLLMs
34
  - [2024/11/29] Released our paper
35
 
36
 
@@ -47,9 +39,7 @@ We investigate domain adaptation of MLLMs through post-training, focusing on dat
47
  | [AdaMLLM-med-11B](https://huggingface.co/AdaptLLM/biomed-Llama-3.2-11B-Vision-Instruct) | AdaptLLM/biomed-Llama-3.2-11B-Vision-Instruct | Biomedicine | Llama-3.2-11B-Vision-Instruct | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) |
48
  | [AdaMLLM-food-11B](https://huggingface.co/AdaptLLM/food-Llama-3.2-11B-Vision-Instruct) | AdaptLLM/food-Llama-3.2-11B-Vision-Instruct | Food | Llama-3.2-11B-Vision-Instruct | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) |
49
 
50
-
51
- ## Contact
52
- Daixuan Cheng: `[email protected]`
53
 
54
  ## About
55
 
@@ -67,6 +57,9 @@ AdaMLLM represents our latest advancement in building domain-specific foundation
67
  We extend supervised task synthesis to multimodality, introducing a unified visual instruction synthesizer to extract instruction-response pairs from domain-specific image-caption pairs. Our synthetic tasks outperform those generated by manual rules, GPT-4, and GPT-4V in improving domain-specific performance for MLLMs.
68
 
69
 
 
 
 
70
 
71
  ## Citation
72
  If you find our work helpful, please cite us.
 
6
 
7
  This repository provides an implementation preview of our paper: [On Domain-Specific Post-Training for Multimodal Large Language Models](https://huggingface.co/papers/2411.19930).
8
 
 
 
 
9
  We investigate domain adaptation of MLLMs through post-training, focusing on data synthesis, training pipelines, and task evaluation.
10
  **(1) Data Synthesis**: Using open-source models, we develop a visual instruction synthesizer that effectively generates diverse visual instruction tasks from domain-specific image-caption pairs. **Our synthetic tasks surpass those generated by manual rules, GPT-4, and GPT-4V in enhancing the domain-specific performance of MLLMs.**
11
  **(2) Training Pipeline**: While the two-stage training--initially on image-caption pairs followed by visual instruction tasks--is commonly adopted for developing general MLLMs, we apply a single-stage training pipeline to enhance task diversity for domain-specific post-training.
 
22
 
23
 
24
  ***************** **Updates** ********************
25
+ - [2024/12/05-11] Released all our data and models
 
 
 
 
 
26
  - [2024/11/29] Released our paper
27
 
28
 
 
39
  | [AdaMLLM-med-11B](https://huggingface.co/AdaptLLM/biomed-Llama-3.2-11B-Vision-Instruct) | AdaptLLM/biomed-Llama-3.2-11B-Vision-Instruct | Biomedicine | Llama-3.2-11B-Vision-Instruct | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) |
40
  | [AdaMLLM-food-11B](https://huggingface.co/AdaptLLM/food-Llama-3.2-11B-Vision-Instruct) | AdaptLLM/food-Llama-3.2-11B-Vision-Instruct | Food | Llama-3.2-11B-Vision-Instruct | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) |
41
 
42
+ Code: [https://github.com/bigai-ai/QA-Synthesizer](https://github.com/bigai-ai/QA-Synthesizer)
 
 
43
 
44
  ## About
45
 
 
57
  We extend supervised task synthesis to multimodality, introducing a unified visual instruction synthesizer to extract instruction-response pairs from domain-specific image-caption pairs. Our synthetic tasks outperform those generated by manual rules, GPT-4, and GPT-4V in improving domain-specific performance for MLLMs.
58
 
59
 
60
+ ## Contact
61
+ Daixuan Cheng: `[email protected]`
62
+
63
 
64
  ## Citation
65
  If you find our work helpful, please cite us.