File size: 4,837 Bytes
5b3e33d
79c6b95
928151f
f0c0674
 
 
 
5b3e33d
 
f0c0674
5b3e33d
 
c15ffb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b3e33d
 
 
 
1f0275a
 
 
5b3e33d
8d103e8
 
 
 
 
5b3e33d
1f0275a
 
 
 
 
 
5b3e33d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5373dc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
language:
- it
tags:
- summarization
datasets:
- ARTeLab/mlsum-it
metrics:
- rouge
base_model: gsarti/it5-base
model-index:
- name: summarization_mlsum
  results:
  - task:
      type: summarization
      name: Summarization
    dataset:
      name: cnn_dailymail
      type: cnn_dailymail
      config: 3.0.0
      split: test
    metrics:
    - type: rouge
      value: 10.775
      name: ROUGE-1
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2MxZWFhOTMxYTBmMjVhZmE0MzU5NDQzMGVlYWU5MjJmYjBiMGI5Y2U1ZmMwZDQzYWUwNDEwNDI1ZjY2ODA5MyIsInZlcnNpb24iOjF9.EqOHhgehPD-OVAK2vCdFndZlhiyh3-Vc89D_ujisSgK-shrouep7JhKV4hYtp-m5PbEvAQSk8PWJsYBlwV00Bw
    - type: rouge
      value: 3.0633
      name: ROUGE-2
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjNiZGNlNjEyOTI4YjQ2OWIzNjczNjU5ZWUyOTk3MTNhMDY0ZmI5ZDcyOGEwOTVjNjFmYjJiMjBhZDBiY2Y1YiIsInZlcnNpb24iOjF9.Hznn3spvnWWUpR4KVQ20UP-rM2MFDtRCCjtaiUxRRvC_46KpsPoyKme2h_X3QFW-xKPMLj4BLaJOLRPTrXO0Dw
    - type: rouge
      value: 9.2018
      name: ROUGE-L
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzVhOGUwYjYxYzQwYTVhZDUzYzIwMjc1ZWE5ZjQ3ZWRkNzlmZGY1MmY5ODk3ZGNiY2Q4YjJiOWY3OTJjOWU4NyIsInZlcnNpb24iOjF9.yKGKdtzMlv81Ym7bCPlEjDMrWhwKO7GHuog9I5PjvnmOwtM2TVTLk8XqIvU3_GnlSBfffNEe12pCJ-zQ27Q3BQ
    - type: rouge
      value: 10.1469
      name: ROUGE-LSUM
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWExM2I0ZjhmYjE5YzQ1YjhiMTdmOTQzNDc5ODM0NjQ5MzMyNDVkMTUxMzg0MDVhNDU2OTNlN2EzNTc1ZGFlYyIsInZlcnNpb24iOjF9.-6_6JVdsBYdDN9Gi5iuEPchyaY0K3az06nTylQKA22bX1mBziQ2Y4z8crdzxF_hf_z1pPunWnhyLj3yUn4KPCA
    - type: loss
      value: 4.3302483558654785
      name: loss
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWI4OWNlYTJiNGU5OWRhYmE4MTFiY2YxNTk4NWY2M2RjMDE2ODY4NzBmYWVmNjUxYmY2MzZiNjBmMTY1ODgxMiIsInZlcnNpb24iOjF9.QDPl5BGgPsu9XdEC0TA_Zjhb47nEHFM9ysBTvDs75-1kp_Y6aqB-xIPFp03llsXBHGnbyAr4WQhFRtxDdlrKDw
    - type: gen_len
      value: 18.9984
      name: gen_len
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODYxZGRhZWFiYzQwODlhNzM0NTlkNzVhN2FkOWYzZDczMmE1MjU0ODdhNGRmYjc1NTE0NTIyYjhhZjRhOGQ1YyIsInZlcnNpb24iOjF9.z5jkmfzM0btlSKulTh7w6FZk66q0JRS803mVgBT1nL88vDaCTezb4wRYbXazssdfo2V8J-EY3r_VwVTAxQxgAw
---

# summarization_mlsum

This model is a fine-tuned version of [gsarti/it5-base](https://huggingface.co/gsarti/it5-base) on MLSum-it for Abstractive Summarization.

It achieves the following results:
- Loss: 2.0190
- Rouge1: 19.3739
- Rouge2: 5.9753
- Rougel: 16.691
- Rougelsum: 16.7862
- Gen Len: 32.5268

## Usage 
```python
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("ARTeLab/it5-summarization-mlsum")
model = T5ForConditionalGeneration.from_pretrained("ARTeLab/it5-summarization-mlsum")
```

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4.0

### Framework versions

- Transformers 4.12.0.dev0
- Pytorch 1.9.1+cu102
- Datasets 1.12.1
- Tokenizers 0.10.3

# Citation

More details and results in [published work](https://www.mdpi.com/2078-2489/13/5/228)

```
@Article{info13050228,
    AUTHOR = {Landro, Nicola and Gallo, Ignazio and La Grassa, Riccardo and Federici, Edoardo},
    TITLE = {Two New Datasets for Italian-Language Abstractive Text Summarization},
    JOURNAL = {Information},
    VOLUME = {13},
    YEAR = {2022},
    NUMBER = {5},
    ARTICLE-NUMBER = {228},
    URL = {https://www.mdpi.com/2078-2489/13/5/228},
    ISSN = {2078-2489},
    ABSTRACT = {Text summarization aims to produce a short summary containing relevant parts from a given text. Due to the lack of data for abstractive summarization on low-resource languages such as Italian, we propose two new original datasets collected from two Italian news websites with multi-sentence summaries and corresponding articles, and from a dataset obtained by machine translation of a Spanish summarization dataset. These two datasets are currently the only two available in Italian for this task. To evaluate the quality of these two datasets, we used them to train a T5-base model and an mBART model, obtaining good results with both. To better evaluate the results obtained, we also compared the same models trained on automatically translated datasets, and the resulting summaries in the same training language, with the automatically translated summaries, which demonstrated the superiority of the models obtained from the proposed datasets.},
    DOI = {10.3390/info13050228}
}
```