Update README.md
Browse files
README.md
CHANGED
|
@@ -5,4 +5,28 @@ datasets:
|
|
| 5 |
language:
|
| 6 |
- en
|
| 7 |
pipeline_tag: sentence-similarity
|
| 8 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
language:
|
| 6 |
- en
|
| 7 |
pipeline_tag: sentence-similarity
|
| 8 |
+
---
|
| 9 |
+
## Model to score relative persuasive language between pairs
|
| 10 |
+
More info about training, evaluation, and use in paper is here: link.
|
| 11 |
+
|
| 12 |
+
Python:
|
| 13 |
+
```python
|
| 14 |
+
from transformers import AutoModelForSequenceClassification,AutoTokenizer
|
| 15 |
+
import torch
|
| 16 |
+
modelname='APauli/Persuasive_language_in_pairs'
|
| 17 |
+
model = AutoModelForSequenceClassification.from_pretrained(modelname)
|
| 18 |
+
tokenizer = AutoTokenizer.from_pretrained(modelname)
|
| 19 |
+
|
| 20 |
+
def predict(textA, textB, model,tokenizer):
|
| 21 |
+
encoded_input = tokenizer(textA, textB, padding=True, truncation=True,max_length=256, return_tensors="pt")
|
| 22 |
+
with torch.no_grad():
|
| 23 |
+
logits = model(**encoded_input).logits
|
| 24 |
+
score1=logits.detach().cpu().numpy()
|
| 25 |
+
#flipped
|
| 26 |
+
encoded_input = tokenizer(textB, textA, padding=True, truncation=True,max_length=256, return_tensors="pt")
|
| 27 |
+
with torch.no_grad():
|
| 28 |
+
logits = model(**encoded_input).logits
|
| 29 |
+
score2=logits.detach().cpu().numpy()*(-1)
|
| 30 |
+
score = (score1+score2)/2
|
| 31 |
+
return score
|
| 32 |
+
```
|