|
import io |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torchvision.transforms as transforms |
|
from PIL import Image |
|
|
|
|
|
class CNN(nn.Module): |
|
def __init__(self): |
|
super(CNN, self).__init__() |
|
self.conv1 = nn.Conv2d(3, 32, 5) |
|
self.conv2 = nn.Conv2d(32, 64, 5) |
|
|
|
self.fc1 = nn.Linear(64 * 13 * 13, 128) |
|
self.fc2 = nn.Linear(128, 64) |
|
self.fc3 = nn.Linear(64, 10) |
|
|
|
def forward(self, x): |
|
x = F.max_pool2d(F.relu(self.conv1(x)), (2,2)) |
|
x = F.max_pool2d(F.relu(self.conv2(x)), 2) |
|
x = x.view(-1, self.num_flat_features(x)) |
|
x = F.relu(self.fc1(x)) |
|
x = F.relu(self.fc2(x)) |
|
x = self.fc3(x) |
|
return x |
|
|
|
def num_flat_features(self, x): |
|
size = x.size()[1:] |
|
num_features = 1 |
|
for s in size: |
|
num_features *= s |
|
return num_features |
|
|
|
loaded_model = CNN() |
|
loaded_model.load_state_dict(torch.load("cnn_model.pth")) |
|
loaded_model.eval() |
|
|
|
|
|
|
|
|
|
def transform_image(image_bytes): |
|
transform = transforms.Compose( |
|
[transforms.Resize(64), transforms.CenterCrop(64), transforms.ToTensor()] |
|
) |
|
image = Image.open(io.BytesIO(image_bytes)) |
|
return transform(image).unsqueeze(0) |
|
|
|
def get_prediction(image_tensor): |
|
outputs = loaded_model(image_tensor) |
|
|
|
_, predicted = torch.max(outputs.data, 1) |
|
return predicted |