Text-to-Image
Diffusers
Safetensors
English
ChatsSDXLPipeline
Flourish commited on
Commit
145490a
·
verified ·
1 Parent(s): 1ea767c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -6
README.md CHANGED
@@ -59,23 +59,25 @@ We provide pretrained CHATS checkpoints on SDXL for easy download and evaluation
59
  ## 🛠️ Quick Start
60
 
61
  ```python
 
62
  from pipeline import ChatsSDXLPipeline
63
 
64
  # Load CHATS-SDXL pipeline
65
  pipe = ChatsSDXLPipeline.from_pretrained(
66
  "AIDC-AI/CHATS",
67
  torch_dtype=torch.bfloat16
68
- ).to("cuda")
 
69
 
70
  # Generate images
71
  images = pipe(
72
- prompts=["A serene mountain lake at sunset"],
73
  num_inference_steps=50,
74
  guidance_scale=5,
75
  seed=0
76
  )
77
 
78
- # 4. Save outputs
79
  for i, img in enumerate(images):
80
  img.save(f"output_{i}.png")
81
  ```
@@ -107,8 +109,8 @@ accelerate launch --config_file=config/ac_ds_8gpu_zero0.yaml train.py \
107
  ### Args:
108
  - config_file: This DeepSpeed parameter allows you to specify the configuration file. If you wish to adjust the number of GPUs used for training, simply change the value of **num_processes** in the ac_ds_xgpu_zero0.yaml file to reflect the desired GPU count.
109
  - pretrained_model_name_or_path: name or patch of unet model to load
110
- - pretrained_vae_model_name_or_path: v=name or patch of vae model to load
111
- - max_train_steps: max steps to train_batch_size
112
  - output: output dir
113
  - dataset_name: the huggingface sufix of the selected dataset (e.g. OIP)
114
 
@@ -137,4 +139,4 @@ The project is released under Apache License 2.0 (http://www.apache.org/licenses
137
 
138
  ## 🚨 Disclaimer
139
 
140
- We used compliance checking algorithms during the training process, to ensure the compliance of the trained model to the best of our ability. Due to complex data and the diversity of language model usage scenarios, we cannot guarantee that the model is completely free of copyright issues or improper content. If you believe anything infringes on your rights or generates improper content, please contact us, and we will promptly address the matter.
 
59
  ## 🛠️ Quick Start
60
 
61
  ```python
62
+ import torch
63
  from pipeline import ChatsSDXLPipeline
64
 
65
  # Load CHATS-SDXL pipeline
66
  pipe = ChatsSDXLPipeline.from_pretrained(
67
  "AIDC-AI/CHATS",
68
  torch_dtype=torch.bfloat16
69
+ )
70
+ pipe.to("cuda")
71
 
72
  # Generate images
73
  images = pipe(
74
+ prompt=["A serene mountain lake at sunset"],
75
  num_inference_steps=50,
76
  guidance_scale=5,
77
  seed=0
78
  )
79
 
80
+ # Save outputs
81
  for i, img in enumerate(images):
82
  img.save(f"output_{i}.png")
83
  ```
 
109
  ### Args:
110
  - config_file: This DeepSpeed parameter allows you to specify the configuration file. If you wish to adjust the number of GPUs used for training, simply change the value of **num_processes** in the ac_ds_xgpu_zero0.yaml file to reflect the desired GPU count.
111
  - pretrained_model_name_or_path: name or patch of unet model to load
112
+ - pretrained_vae_model_name_or_path: name or patch of vae model to load
113
+ - max_train_steps: max steps to train
114
  - output: output dir
115
  - dataset_name: the huggingface sufix of the selected dataset (e.g. OIP)
116
 
 
139
 
140
  ## 🚨 Disclaimer
141
 
142
+ We used compliance checking algorithms during the training process, to ensure the compliance of the trained model to the best of our ability. Due to complex data and the diversity of language model usage scenarios, we cannot guarantee that the model is completely free of copyright issues or improper content. If you believe anything infringes on your rights or generates improper content, please contact us, and we will promptly address the matter.