Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 249.18 +/- 21.16
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7cdc51bce830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cdc51bce8c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cdc51bce950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cdc51bce9e0>", "_build": "<function ActorCriticPolicy._build at 0x7cdc51bcea70>", "forward": "<function ActorCriticPolicy.forward at 0x7cdc51bceb00>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cdc51bceb90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cdc51bcec20>", "_predict": "<function ActorCriticPolicy._predict at 0x7cdc51bcecb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cdc51bced40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cdc51bcedd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cdc51bcee60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cdc51b79500>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1723010689058023916, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADO7wLuyW7M/Mp+UviS9ab7rgZE7WgefPAAAAAAAAAAAgOUUPVwzIbrjqkW7ySt3ON3vTTtVhXk5AACAPwAAgD9AZrK90dSBPzI9JL7BsdS+wSHsve1S9rwAAAAAAAAAALb7gz7OSZE/PaD7vHWknL4mpag+Apc8vgAAAAAAAAAAetxlPhdkTT+Tauy6C2KEvjr67j3VH6K9AAAAAAAAAAAGPDe+czicPn42wT7vQke+i7yLPftj0T0AAAAAAAAAADOnjjsgorU/IsLhPncXuD5JE6W78ozMvQAAAAAAAAAAug8fvpSBHj+8r6M9GQSJvhZ2hr269Wg9AAAAAAAAAACaIva8FXs5PjSRhT6j1nC+ThqjPRwQCr0AAAAAAAAAAHPD6b0CZ0E/k+EvvFIYpr7x5oS9CeMMPAAAAAAAAAAAM0UovOyusLta6bK7u62QPDNtA70jfnU9AACAPwAAgD+awcu7rmjKPfl9gr4SgJi+fXAdvsfaxbwAAAAAAAAAAJqxWjuft6U8wSCFvBrPWL7e8aS9oJPQPQAAAAAAAAAAMxs7O59ntz8Stcs8+18FO2I+HzvFJQI9AAAAAAAAAADacdW9VHy0vAojQj7BFSK+p5MwvGdAlr0AAIA/AACAPzN2Eb3B6Kg/FwekvgP6yb7yMwe94BL7vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAEAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGH7RCIDYAeMAWyUTegDjAF0lEdAksEXhXKbKHV9lChoBkdAcUi9qDbrT2gHTSUBaAhHQJLBJ03fhuR1fZQoaAZHQHAp9a+vhZRoB0v1aAhHQJLBRePaL4x1fZQoaAZHQFEd7w8W9DhoB03oA2gIR0CSwsVXFLnLdX2UKGgGR0BxEb/R3NcGaAdL52gIR0CSwv1v2oNvdX2UKGgGR0Bw6dnwob4raAdL82gIR0CSxAH2h7E6dX2UKGgGR0Bwlw5lvqC6aAdNFAFoCEdAksWdSVGCqnV9lChoBkdAcHXUhV2ic2gHTTMBaAhHQJLF+ez2OAB1fZQoaAZHQHCsSFXaJyhoB00+AWgIR0CSxjZof0VadX2UKGgGR0BxKXsIE8q4aAdNLQFoCEdAksbIr8R+SnV9lChoBkdAZDVHUc4o7WgHTegDaAhHQJLG/IdU83d1fZQoaAZHQHBa8/t6X0JoB00hAWgIR0CSx5c6/7BPdX2UKGgGR0Bwy1tuUD+zaAdNMQFoCEdAksenE2pAEHV9lChoBkdAb19fPX05EWgHTR0BaAhHQJLIYDYAbQ11fZQoaAZHQG2lXaakRBhoB00hAWgIR0CSyJpkPMB7dX2UKGgGR0BwxW+yquKXaAdNDwFoCEdAkslC1JDmbXV9lChoBkdAcjKfEGZ/kWgHTSABaAhHQJLJsH2RJVd1fZQoaAZHQDaZGy5Zr59oB0vlaAhHQJLJzkn1Fph1fZQoaAZHQHBhidBjWkJoB00nAWgIR0CSydNqQA+7dX2UKGgGR0BxiWE8JUo8aAdNLwFoCEdAksozuBtk4HV9lChoBkdAQB4PK+zt1WgHS7doCEdAkssiB06o2nV9lChoBkdAcYKRqGlANWgHTSsBaAhHQJLLnpA2Q4l1fZQoaAZHQHDR/D+BH09oB00gAWgIR0CSzEdznzQNdX2UKGgGR0BQqLCvX9R8aAdLvmgIR0CSzKXLeQ+2dX2UKGgGR0BuiWCoS+QEaAdNCQFoCEdAks0I1He7+XV9lChoBkdAcy6lANXo1WgHTQ0BaAhHQJLNnHBDXvp1fZQoaAZHQHKYzeoDPnloB00TAWgIR0CSzkDmbLEDdX2UKGgGR0BwJusMiKR/aAdNHwFoCEdAks/bz5GjK3V9lChoBkdAb20PyTY/V2gHTUMBaAhHQJLQnfpD/l11fZQoaAZHQHCxEK/mDDloB00ZAWgIR0CS0MxQzk6tdX2UKGgGR0BuswZZSvTxaAdNFQFoCEdAktD47/4qPXV9lChoBkdAcm7bh3qzJWgHTRcBaAhHQJLR7bHp8nh1fZQoaAZHQGwZyZa3ZwpoB00dAWgIR0CS0v/d69kCdX2UKGgGR0BuucL+glF+aAdNNAFoCEdAktPAVwgkknV9lChoBkdAbyv1klNUO2gHTSsBaAhHQJLUOZjQRf51fZQoaAZHQHNv/ikwevJoB009AWgIR0CS1ENrj5sTdX2UKGgGR0BweEzabnX/aAdL92gIR0CS1I0knkT6dX2UKGgGR0ByAjF5v99/aAdNNQFoCEdAktZO7g88tHV9lChoBkdAcgFIK+i8F2gHTQIBaAhHQJLWm2a2F391fZQoaAZHQHApz3h4t6JoB00iAWgIR0CS104YJmdzdX2UKGgGR0BwmOGSIP9UaAdNFAFoCEdAktfRpQDV6XV9lChoBkdAcaR4pMHryGgHTQ8BaAhHQJLqhrnDBM11fZQoaAZHQHA4ww482aVoB00hAWgIR0CS67qQzUI+dX2UKGgGR0ByuhkYoAn2aAdNAQFoCEdAkuvipaRp13V9lChoBkdAcVF4WUKRdWgHTQ4BaAhHQJLs1jkMkQh1fZQoaAZHQHE/8uzyBkJoB00dAWgIR0CS7V/6O5rhdX2UKGgGR0Bwnh4D9wWFaAdNKwFoCEdAku2O14Pf9HV9lChoBkdAbVx77bcoIGgHTSYBaAhHQJLuRq20AtF1fZQoaAZHQHGyBBeHBUJoB00wAWgIR0CS70wD/2kBdX2UKGgGR0ByseA6Mir1aAdNEAFoCEdAku989KVY6nV9lChoBkdAcWVD1GsmwGgHTSMBaAhHQJLvdGXokiV1fZQoaAZHQHJHA176YVtoB00cAWgIR0CS759RaX8gdX2UKGgGR0ByVbDKoybhaAdNKwFoCEdAku/57LMcInV9lChoBkdAcM8ObRWtEGgHTQUBaAhHQJLwT5hz/6x1fZQoaAZHQHGvwTZg5R1oB00VAWgIR0CS8Ossg+yJdX2UKGgGR0Bwuy2lVLi/aAdNFgFoCEdAkvHE43m3fHV9lChoBkdAcNZOeJ53T2gHTRcBaAhHQJLyPxZuAI91fZQoaAZHQHC4WpVCHARoB01BAWgIR0CS8pZLqUu+dX2UKGgGR0Bw3peyAxzraAdNGwFoCEdAkvOi+De0onV9lChoBkdAbzX6Q/5ckmgHTSYBaAhHQJLzzwqiGnJ1fZQoaAZHQHFnWH+IdlxoB00iAWgIR0CS9M69CeEqdX2UKGgGR0Bxv468xsVMaAdNFwFoCEdAkvUJVCHARHV9lChoBkdAcbyYA80UGmgHTR4BaAhHQJL1bAmAskJ1fZQoaAZHQG32XiiqQzVoB00FAWgIR0CS9rCwr1/UdX2UKGgGR0Bxk1uFYdQwaAdNCAFoCEdAkvdwYYR/VnV9lChoBkdAcbM86FM7EGgHTSMBaAhHQJL3td3Sro51fZQoaAZHQHH9cWTHKfZoB00fAWgIR0CS97v+wTufdX2UKGgGR0BvZYevIOpbaAdNBQFoCEdAkvfLu+h4+3V9lChoBkdAcpf8x9G7SWgHTRsBaAhHQJL5IEfT1Ch1fZQoaAZHQHLxH3+MqBpoB01dAWgIR0CS+T2606YFdX2UKGgGR0Bt4ATTOPeYaAdNhAFoCEdAkvlT/ZM+NnV9lChoBkdAcdMl/6O5rmgHTQoBaAhHQJL5iAZsKsx1fZQoaAZHQG8Maab4Ju5oB00nAWgIR0CS+ylXiiqRdX2UKGgGR0BxI1dld1MeaAdNFgFoCEdAkvvQfMfRu3V9lChoBkdAcIDu4PPLPmgHTU8BaAhHQJL8As5GSZB1fZQoaAZHQHKzlI3BHkNoB0v1aAhHQJL8DFVDKHR1fZQoaAZHQG+jps41gploB0v9aAhHQJL8dB4Uvf11fZQoaAZHQEIxQw9JSR9oB0vQaAhHQJL9m0TlDF91fZQoaAZHQHDaDvE0iyJoB00gAWgIR0CS/cgE2YOUdX2UKGgGR0BxdXVVghKUaAdNYAFoCEdAkv4BV6u4gHV9lChoBkdAccsZuAI6bWgHS/doCEdAkv7T987ZF3V9lChoBkdAclQrfLs8gmgHTQUBaAhHQJL/Lpu/Dcd1fZQoaAZHQHCNJoGpuMxoB00nAWgIR0CS/0IU8FINdX2UKGgGR0BzfLdEb5uZaAdNMgFoCEdAkwArVawD/3V9lChoBkdAcgqnGKhtcmgHTQcBaAhHQJMAkEOiFkB1fZQoaAZHQHJORoAXEZRoB0v8aAhHQJMAr/tIClt1fZQoaAZHQEOT7WuoxYdoB0vLaAhHQJMA8YWLxZx1fZQoaAZHQEdgfg75mAdoB0vBaAhHQJMBOKFZgXx1fZQoaAZHQG3LxQizLOloB00lAWgIR0CTAYOZb6gvdX2UKGgGR0BxS9UuL740aAdNPQFoCEdAkwIae9SMtXV9lChoBkdAS84xJul41WgHS7FoCEdAkwNARf4REnV9lChoBkdAbVlndO6/ZmgHTR4BaAhHQJMEpJUYKpl1fZQoaAZHQAyCjcmBvrJoB0vpaAhHQJME5br1M/R1fZQoaAZHQGzb7aqS5iFoB008AWgIR0CTBeAnDziCdX2UKGgGR0Bx8AnE2pAEaAdNNQFoCEdAkwYyzXz19XV9lChoBkdAcmqZZjhDPWgHTSIBaAhHQJMHVeTmnwZ1fZQoaAZHQG3Pbk4m1IBoB00fAWgIR0CTCMtp22XtdX2UKGgGR0Bx54S5AhStaAdNEwFoCEdAkwjmi5/b03V9lChoBkdAcRwxhlUZN2gHTR4BaAhHQJMJN63RXwN1fZQoaAZHQECj8Aq/dqNoB0vfaAhHQJMJQY8+zMR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a742ffdf91bdfa6764b6ae1ef6151fbeee74d412d2c9eea81a084eb48702b32
|
3 |
+
size 148064
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7cdc51bce830>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cdc51bce8c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cdc51bce950>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cdc51bce9e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7cdc51bcea70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7cdc51bceb00>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7cdc51bceb90>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cdc51bcec20>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7cdc51bcecb0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cdc51bced40>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cdc51bcedd0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7cdc51bcee60>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7cdc51b79500>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1723010689058023916,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADO7wLuyW7M/Mp+UviS9ab7rgZE7WgefPAAAAAAAAAAAgOUUPVwzIbrjqkW7ySt3ON3vTTtVhXk5AACAPwAAgD9AZrK90dSBPzI9JL7BsdS+wSHsve1S9rwAAAAAAAAAALb7gz7OSZE/PaD7vHWknL4mpag+Apc8vgAAAAAAAAAAetxlPhdkTT+Tauy6C2KEvjr67j3VH6K9AAAAAAAAAAAGPDe+czicPn42wT7vQke+i7yLPftj0T0AAAAAAAAAADOnjjsgorU/IsLhPncXuD5JE6W78ozMvQAAAAAAAAAAug8fvpSBHj+8r6M9GQSJvhZ2hr269Wg9AAAAAAAAAACaIva8FXs5PjSRhT6j1nC+ThqjPRwQCr0AAAAAAAAAAHPD6b0CZ0E/k+EvvFIYpr7x5oS9CeMMPAAAAAAAAAAAM0UovOyusLta6bK7u62QPDNtA70jfnU9AACAPwAAgD+awcu7rmjKPfl9gr4SgJi+fXAdvsfaxbwAAAAAAAAAAJqxWjuft6U8wSCFvBrPWL7e8aS9oJPQPQAAAAAAAAAAMxs7O59ntz8Stcs8+18FO2I+HzvFJQI9AAAAAAAAAADacdW9VHy0vAojQj7BFSK+p5MwvGdAlr0AAIA/AACAPzN2Eb3B6Kg/FwekvgP6yb7yMwe94BL7vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAEAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGH7RCIDYAeMAWyUTegDjAF0lEdAksEXhXKbKHV9lChoBkdAcUi9qDbrT2gHTSUBaAhHQJLBJ03fhuR1fZQoaAZHQHAp9a+vhZRoB0v1aAhHQJLBRePaL4x1fZQoaAZHQFEd7w8W9DhoB03oA2gIR0CSwsVXFLnLdX2UKGgGR0BxEb/R3NcGaAdL52gIR0CSwv1v2oNvdX2UKGgGR0Bw6dnwob4raAdL82gIR0CSxAH2h7E6dX2UKGgGR0Bwlw5lvqC6aAdNFAFoCEdAksWdSVGCqnV9lChoBkdAcHXUhV2ic2gHTTMBaAhHQJLF+ez2OAB1fZQoaAZHQHCsSFXaJyhoB00+AWgIR0CSxjZof0VadX2UKGgGR0BxKXsIE8q4aAdNLQFoCEdAksbIr8R+SnV9lChoBkdAZDVHUc4o7WgHTegDaAhHQJLG/IdU83d1fZQoaAZHQHBa8/t6X0JoB00hAWgIR0CSx5c6/7BPdX2UKGgGR0Bwy1tuUD+zaAdNMQFoCEdAksenE2pAEHV9lChoBkdAb19fPX05EWgHTR0BaAhHQJLIYDYAbQ11fZQoaAZHQG2lXaakRBhoB00hAWgIR0CSyJpkPMB7dX2UKGgGR0BwxW+yquKXaAdNDwFoCEdAkslC1JDmbXV9lChoBkdAcjKfEGZ/kWgHTSABaAhHQJLJsH2RJVd1fZQoaAZHQDaZGy5Zr59oB0vlaAhHQJLJzkn1Fph1fZQoaAZHQHBhidBjWkJoB00nAWgIR0CSydNqQA+7dX2UKGgGR0BxiWE8JUo8aAdNLwFoCEdAksozuBtk4HV9lChoBkdAQB4PK+zt1WgHS7doCEdAkssiB06o2nV9lChoBkdAcYKRqGlANWgHTSsBaAhHQJLLnpA2Q4l1fZQoaAZHQHDR/D+BH09oB00gAWgIR0CSzEdznzQNdX2UKGgGR0BQqLCvX9R8aAdLvmgIR0CSzKXLeQ+2dX2UKGgGR0BuiWCoS+QEaAdNCQFoCEdAks0I1He7+XV9lChoBkdAcy6lANXo1WgHTQ0BaAhHQJLNnHBDXvp1fZQoaAZHQHKYzeoDPnloB00TAWgIR0CSzkDmbLEDdX2UKGgGR0BwJusMiKR/aAdNHwFoCEdAks/bz5GjK3V9lChoBkdAb20PyTY/V2gHTUMBaAhHQJLQnfpD/l11fZQoaAZHQHCxEK/mDDloB00ZAWgIR0CS0MxQzk6tdX2UKGgGR0BuswZZSvTxaAdNFQFoCEdAktD47/4qPXV9lChoBkdAcm7bh3qzJWgHTRcBaAhHQJLR7bHp8nh1fZQoaAZHQGwZyZa3ZwpoB00dAWgIR0CS0v/d69kCdX2UKGgGR0BuucL+glF+aAdNNAFoCEdAktPAVwgkknV9lChoBkdAbyv1klNUO2gHTSsBaAhHQJLUOZjQRf51fZQoaAZHQHNv/ikwevJoB009AWgIR0CS1ENrj5sTdX2UKGgGR0BweEzabnX/aAdL92gIR0CS1I0knkT6dX2UKGgGR0ByAjF5v99/aAdNNQFoCEdAktZO7g88tHV9lChoBkdAcgFIK+i8F2gHTQIBaAhHQJLWm2a2F391fZQoaAZHQHApz3h4t6JoB00iAWgIR0CS104YJmdzdX2UKGgGR0BwmOGSIP9UaAdNFAFoCEdAktfRpQDV6XV9lChoBkdAcaR4pMHryGgHTQ8BaAhHQJLqhrnDBM11fZQoaAZHQHA4ww482aVoB00hAWgIR0CS67qQzUI+dX2UKGgGR0ByuhkYoAn2aAdNAQFoCEdAkuvipaRp13V9lChoBkdAcVF4WUKRdWgHTQ4BaAhHQJLs1jkMkQh1fZQoaAZHQHE/8uzyBkJoB00dAWgIR0CS7V/6O5rhdX2UKGgGR0Bwnh4D9wWFaAdNKwFoCEdAku2O14Pf9HV9lChoBkdAbVx77bcoIGgHTSYBaAhHQJLuRq20AtF1fZQoaAZHQHGyBBeHBUJoB00wAWgIR0CS70wD/2kBdX2UKGgGR0ByseA6Mir1aAdNEAFoCEdAku989KVY6nV9lChoBkdAcWVD1GsmwGgHTSMBaAhHQJLvdGXokiV1fZQoaAZHQHJHA176YVtoB00cAWgIR0CS759RaX8gdX2UKGgGR0ByVbDKoybhaAdNKwFoCEdAku/57LMcInV9lChoBkdAcM8ObRWtEGgHTQUBaAhHQJLwT5hz/6x1fZQoaAZHQHGvwTZg5R1oB00VAWgIR0CS8Ossg+yJdX2UKGgGR0Bwuy2lVLi/aAdNFgFoCEdAkvHE43m3fHV9lChoBkdAcNZOeJ53T2gHTRcBaAhHQJLyPxZuAI91fZQoaAZHQHC4WpVCHARoB01BAWgIR0CS8pZLqUu+dX2UKGgGR0Bw3peyAxzraAdNGwFoCEdAkvOi+De0onV9lChoBkdAbzX6Q/5ckmgHTSYBaAhHQJLzzwqiGnJ1fZQoaAZHQHFnWH+IdlxoB00iAWgIR0CS9M69CeEqdX2UKGgGR0Bxv468xsVMaAdNFwFoCEdAkvUJVCHARHV9lChoBkdAcbyYA80UGmgHTR4BaAhHQJL1bAmAskJ1fZQoaAZHQG32XiiqQzVoB00FAWgIR0CS9rCwr1/UdX2UKGgGR0Bxk1uFYdQwaAdNCAFoCEdAkvdwYYR/VnV9lChoBkdAcbM86FM7EGgHTSMBaAhHQJL3td3Sro51fZQoaAZHQHH9cWTHKfZoB00fAWgIR0CS97v+wTufdX2UKGgGR0BvZYevIOpbaAdNBQFoCEdAkvfLu+h4+3V9lChoBkdAcpf8x9G7SWgHTRsBaAhHQJL5IEfT1Ch1fZQoaAZHQHLxH3+MqBpoB01dAWgIR0CS+T2606YFdX2UKGgGR0Bt4ATTOPeYaAdNhAFoCEdAkvlT/ZM+NnV9lChoBkdAcdMl/6O5rmgHTQoBaAhHQJL5iAZsKsx1fZQoaAZHQG8Maab4Ju5oB00nAWgIR0CS+ylXiiqRdX2UKGgGR0BxI1dld1MeaAdNFgFoCEdAkvvQfMfRu3V9lChoBkdAcIDu4PPLPmgHTU8BaAhHQJL8As5GSZB1fZQoaAZHQHKzlI3BHkNoB0v1aAhHQJL8DFVDKHR1fZQoaAZHQG+jps41gploB0v9aAhHQJL8dB4Uvf11fZQoaAZHQEIxQw9JSR9oB0vQaAhHQJL9m0TlDF91fZQoaAZHQHDaDvE0iyJoB00gAWgIR0CS/cgE2YOUdX2UKGgGR0BxdXVVghKUaAdNYAFoCEdAkv4BV6u4gHV9lChoBkdAccsZuAI6bWgHS/doCEdAkv7T987ZF3V9lChoBkdAclQrfLs8gmgHTQUBaAhHQJL/Lpu/Dcd1fZQoaAZHQHCNJoGpuMxoB00nAWgIR0CS/0IU8FINdX2UKGgGR0BzfLdEb5uZaAdNMgFoCEdAkwArVawD/3V9lChoBkdAcgqnGKhtcmgHTQcBaAhHQJMAkEOiFkB1fZQoaAZHQHJORoAXEZRoB0v8aAhHQJMAr/tIClt1fZQoaAZHQEOT7WuoxYdoB0vLaAhHQJMA8YWLxZx1fZQoaAZHQEdgfg75mAdoB0vBaAhHQJMBOKFZgXx1fZQoaAZHQG3LxQizLOloB00lAWgIR0CTAYOZb6gvdX2UKGgGR0BxS9UuL740aAdNPQFoCEdAkwIae9SMtXV9lChoBkdAS84xJul41WgHS7FoCEdAkwNARf4REnV9lChoBkdAbVlndO6/ZmgHTR4BaAhHQJMEpJUYKpl1fZQoaAZHQAyCjcmBvrJoB0vpaAhHQJME5br1M/R1fZQoaAZHQGzb7aqS5iFoB008AWgIR0CTBeAnDziCdX2UKGgGR0Bx8AnE2pAEaAdNNQFoCEdAkwYyzXz19XV9lChoBkdAcmqZZjhDPWgHTSIBaAhHQJMHVeTmnwZ1fZQoaAZHQG3Pbk4m1IBoB00fAWgIR0CTCMtp22XtdX2UKGgGR0Bx54S5AhStaAdNEwFoCEdAkwjmi5/b03V9lChoBkdAcRwxhlUZN2gHTR4BaAhHQJMJN63RXwN1fZQoaAZHQECj8Aq/dqNoB0vfaAhHQJMJQY8+zMR1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:35aa26666b94a7ecbb138e46ee1e53703994e576442b6149123b60ba6df624a8
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a49025fa259fe6f561e2e61340a78cf4adf1891274a8497fa19924f189f4dee8
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.3.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (165 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 249.17894660000002, "std_reward": 21.162299416098122, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-08-07T06:28:12.822245"}
|