AE1999 commited on
Commit
e3f63cd
·
verified ·
1 Parent(s): 676944f

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.26 +/- 0.12
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:054e9345101317b996f1a412561bcd8eaa5eed3f24641dc2aaf155703c62af27
3
+ size 111306
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x78c1f6ab0040>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x78c1f6a1d600>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1739825630366525673,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA+Eavv8jPrL3ABBs/j5daPrUCTzueit4+j5daPrUCTzueit4+j5daPrUCTzueit4+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAArWfFv+2QIz773cs+hoP+vgDq1T7r07c+Ai2gv/oZqr+z7Mg/pieBv1K9ib+rUmM/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD4Rq+/yM+svcAEGz+3ZSu/CLIevQHDtj+Pl1o+tQJPO56K3j6xt/E+MR/euiC/wD6Pl1o+tQJPO56K3j6xt/E+MR/euiC/wD6Pl1o+tQJPO56K3j6xt/E+MR/euiC/wD6UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[-1.3693533 -0.08438069 0.6055412 ]\n [ 0.21346878 0.00315873 0.43465132]\n [ 0.21346878 0.00315873 0.43465132]\n [ 0.21346878 0.00315873 0.43465132]]",
34
+ "desired_goal": "[[-1.5422264 0.15973254 0.39817795]\n [-0.4970972 0.4178009 0.35903868]\n [-1.2513735 -1.3289177 1.5697235 ]\n [-1.0090225 -1.0760901 0.88798016]]",
35
+ "observation": "[[-1.3693533 -0.08438069 0.6055412 -0.6695208 -0.038744 1.427826 ]\n [ 0.21346878 0.00315873 0.43465132 0.47210458 -0.00169466 0.37645817]\n [ 0.21346878 0.00315873 0.43465132 0.47210458 -0.00169466 0.37645817]\n [ 0.21346878 0.00315873 0.43465132 0.47210458 -0.00169466 0.37645817]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA45c2Pbw5rT2uflE+ZC/9PH1eCz379mA8iIO9PXxFxb1hq3k95eLQvRiV0z1v6O48lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[ 0.04457844 0.08458278 0.2045848 ]\n [ 0.03090639 0.03402566 0.01373076]\n [ 0.09253603 -0.09632394 0.06095446]\n [-0.10199527 0.10331172 0.02916357]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv6ftIClrM1WMAWyUSwGMAXSUR0Cg0jP+wTufdX2UKGgGR7/GFSsKb8WLaAdLA2gIR0Cg0V6X8fmtdX2UKGgGR7/XlBQemvW6aAdLBWgIR0Cg0fDb8FY/dX2UKGgGR7+4sQNCqp97aAdLAmgIR0Cg0jxbr1M/dX2UKGgGR7/QOB19v0iAaAdLA2gIR0Cg0a3lbNbDdX2UKGgGR7+mK/Efkmx/aAdLAWgIR0Cg0bF9roGIdX2UKGgGR7/QxagVXV9XaAdLA2gIR0Cg0WojW07bdX2UKGgGR7+1hd+ocaOxaAdLAmgIR0Cg0kQA+6iCdX2UKGgGR7/LIGQjlgc+aAdLA2gIR0Cg0fyeZof0dX2UKGgGR7+XZsbedkJ8aAdLAWgIR0Cg0bXLNfPYdX2UKGgGR7/EkGA08/2TaAdLAmgIR0Cg0k3tBv74dX2UKGgGR7/Riu+yquKXaAdLA2gIR0Cg0XhjnV5KdX2UKGgGR7/Uz5XU6PsBaAdLA2gIR0Cg0gsxXXAedX2UKGgGR7/WyquKXOW0aAdLBGgIR0Cg0clMRHwxdX2UKGgGR7+/wAlv60pmaAdLAmgIR0Cg0YJuuRs/dX2UKGgGR7/H/KhcqvvCaAdLA2gIR0Cg0lztLL6ldX2UKGgGR7++svIwM6RyaAdLAmgIR0Cg0hWrGR3edX2UKGgGR7/Tn0TURWcSaAdLA2gIR0Cg0dudXko4dX2UKGgGR7/QKnvUjLSvaAdLA2gIR0Cg0m7hvR7adX2UKGgGR7/P6InBtUGWaAdLA2gIR0Cg0iePaL4vdX2UKGgGR7/S+n62v0ROaAdLBGgIR0Cg0ZmseXAudX2UKGgGR7/A2WIGhVU/aAdLAmgIR0Cg0nhSDRMOdX2UKGgGR7/TStvGZNO/aAdLA2gIR0Cg0jgrhBJJdX2UKGgGR7/TpTuOS4e+aAdLA2gIR0Cg0ao7V8TjdX2UKGgGR7/PrDZUT+NtaAdLA2gIR0Cg0oiiRGMGdX2UKGgGR7/htga3qiXZaAdLBmgIR0Cg0fqT8pCsdX2UKGgGR7/Qa72+PBBSaAdLA2gIR0Cg0bgkka/AdX2UKGgGR7/e6tT1kDp1aAdLBGgIR0Cg0ksNlRP5dX2UKGgGR7/QseXAuZkTaAdLA2gIR0Cg0pok7fYSdX2UKGgGR7+SjcmBvrGBaAdLAWgIR0Cg0lLOiWVvdX2UKGgGR7/LMdLg4wRHaAdLA2gIR0Cg0gx7qptKdX2UKGgGR7/clAeJYT0yaAdLBGgIR0Cg0c7fP5YYdX2UKGgGR7/RUG3WnTAnaAdLA2gIR0Cg0qkgfU4JdX2UKGgGR7/OBq9Gqgh9aAdLA2gIR0Cg0mH7HhjwdX2UKGgGR7/IH3UQTVUdaAdLA2gIR0Cg0huSwGGEdX2UKGgGR7+OnQ6ZH/cWaAdLAWgIR0Cg0dR8D0UXdX2UKGgGR7+w7aIvalDXaAdLAmgIR0Cg0m6Vt4zKdX2UKGgGR7/DLqUu+RHPaAdLAmgIR0Cg0ifsu3+ddX2UKGgGR7/CFQEZBLPEaAdLAmgIR0Cg0eDHGS6ldX2UKGgGR7/ZMXJo0ygxaAdLBGgIR0Cg0r9OymhudX2UKGgGR7+/L6k690zTaAdLAmgIR0Cg0ngBkqc3dX2UKGgGR7/Dygf2bobGaAdLAmgIR0Cg0jFPacqfdX2UKGgGR7/N7MxGlQ/HaAdLA2gIR0Cg0e6kZaV2dX2UKGgGR7+/+PzWf9P2aAdLAmgIR0Cg0jphnanKdX2UKGgGR7/JWiDdxhlUaAdLA2gIR0Cg0oeE7GNrdX2UKGgGR7/XPwNLDhtMaAdLBGgIR0Cg0tLwF1SwdX2UKGgGR7/HPgvUSZjQaAdLA2gIR0Cg0f1L8JlbdX2UKGgGR79+BQN0/4ZdaAdLAWgIR0Cg0tcTBZZCdX2UKGgGR7/OYaYNRWLhaAdLA2gIR0Cg0pMPBi1BdX2UKGgGR7/ZY/mknCwbaAdLBGgIR0Cg0kwx33YddX2UKGgGR7+yJ9Aood+5aAdLAmgIR0Cg0t6bWmP6dX2UKGgGR7+lgMMI/qxDaAdLAWgIR0Cg0pdAX2ugdX2UKGgGR7/c/D+BH09RaAdLBGgIR0Cg0hAl4TsZdX2UKGgGR7/MHTqjafz0aAdLA2gIR0Cg0u4Glhw3dX2UKGgGR7/J0+1SflIVaAdLA2gIR0Cg0qaFdszmdX2UKGgGR7/aTtsvZh8ZaAdLBGgIR0Cg0l/Tb349dX2UKGgGR7+Yw7DEWIoFaAdLAWgIR0Cg0qtBWxQjdX2UKGgGR7+/mFJxvNu+aAdLAmgIR0Cg0vcan753dX2UKGgGR7+3IvJzT4L1aAdLAmgIR0Cg0mjRc/t6dX2UKGgGR7/XcuanaWX1aAdLBGgIR0Cg0iHh86V/dX2UKGgGR7/M5sj3VTaTaAdLA2gIR0Cg0rqrq+rVdX2UKGgGR7+zRhMJx//eaAdLAmgIR0Cg0nPwVj7RdX2UKGgGR7+0ytV7x/d7aAdLAmgIR0Cg0iyqEOAidX2UKGgGR7/JZ+QU5+6RaAdLA2gIR0Cg0walLvkSdX2UKGgGR7/OjFhoduHfaAdLA2gIR0Cg0saSLZSOdX2UKGgGR7/HYg7o0Q9SaAdLA2gIR0Cg0n/bTMJQdX2UKGgGR7/H48EFGG21aAdLA2gIR0Cg0jjOkcjrdX2UKGgGR7/SPkJa7mMgaAdLA2gIR0Cg0xWVu76IdX2UKGgGR7+9jYqXnhbXaAdLAmgIR0Cg0tH+6y0KdX2UKGgGR7/BJNj9XLeRaAdLAmgIR0Cg0kPTw2ETdX2UKGgGR7+2eEqUeMhpaAdLAmgIR0Cg0x2/ag27dX2UKGgGR7+nhsImgJ1JaAdLAWgIR0Cg0tY46wMZdX2UKGgGR7/RZtelbeMyaAdLA2gIR0Cg0o9lEqlQdX2UKGgGR7+R95Qgs9SuaAdLAWgIR0Cg0tpKzzErdX2UKGgGR7+2I/JNj9XLaAdLAmgIR0Cg0yXPJJXhdX2UKGgGR7+jVawD/2kBaAdLAWgIR0Cg0t5HVf/ndX2UKGgGR7+5k4FRpDeCaAdLAmgIR0Cg0pd56dDqdX2UKGgGR7/NgEU0vXbuaAdLA2gIR0Cg0lBwuM/AdX2UKGgGR7+oSteUpuuSaAdLAWgIR0Cg0y0DEFW5dX2UKGgGR7+PechC+lCUaAdLAWgIR0Cg0uWBas6rdX2UKGgGR7+0AS39aUzLaAdLAmgIR0Cg0qJt78ekdX2UKGgGR7+13A2ycCo1aAdLAmgIR0Cg0zUO3DvWdX2UKGgGR7/GWJrLyMDPaAdLA2gIR0Cg0l8jzI3jdX2UKGgGR7/LMpw0fozOaAdLA2gIR0Cg0vFpoK2KdX2UKGgGR7/ETVUdaMaTaAdLAmgIR0Cg0qqpDNQkdX2UKGgGR7/RJcgQpWmxaAdLA2gIR0Cg00Lz5GjLdX2UKGgGR7/I3vQWvbGnaAdLA2gIR0Cg0rgvlEJCdX2UKGgGR7/eOZssQNCraAdLBGgIR0Cg0nDPGACodX2UKGgGR7/MfHPu5SWJaAdLA2gIR0Cg005HEuQIdX2UKGgGR7/fwpON5t3waAdLBWgIR0Cg0wb48EFGdX2UKGgGR7/Br0J4SpR5aAdLAmgIR0Cg0sArxy4ndX2UKGgGR7/DcMVk+X7caAdLAmgIR0Cg0njmjj7zdX2UKGgGR7/SXVbzK9wnaAdLA2gIR0Cg0s0cn3L3dX2UKGgGR7/ROskpqh11aAdLA2gIR0Cg0oYjbBXTdX2UKGgGR7/XqFyq+8GtaAdLBGgIR0Cg02ANG3F2dX2UKGgGR7/VKpkwvg3taAdLBGgIR0Cg0xiqyWzGdX2UKGgGR7+zKwIMSbpeaAdLAmgIR0Cg0o5aNdZ8dX2UKGgGR7++jfvWpZOjaAdLAmgIR0Cg0yDopx3ndX2UKGgGR7/Mn1nM+u/2aAdLA2gIR0Cg0tpjUd7wdX2UKGgGR7+U2LpA2Q4kaAdLAWgIR0Cg0pNfG+9KdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVYwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBaMBGZ1bmOUjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac8b99127ae8d2537ed12640a2c5bfd133ad4cd376eeb22ad66e8e275c8d817f
3
+ size 48456
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4901f6df93d9c60b39c91878e84d532717ef8d9d864350722de881a40059589a
3
+ size 46447
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.6.56+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Nov 10 10:07:59 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.5.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.1.0
8
+ - Gymnasium: 0.29.0
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x78c1f6ab0040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78c1f6a1d600>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1739825630366525673, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA+Eavv8jPrL3ABBs/j5daPrUCTzueit4+j5daPrUCTzueit4+j5daPrUCTzueit4+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAArWfFv+2QIz773cs+hoP+vgDq1T7r07c+Ai2gv/oZqr+z7Mg/pieBv1K9ib+rUmM/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD4Rq+/yM+svcAEGz+3ZSu/CLIevQHDtj+Pl1o+tQJPO56K3j6xt/E+MR/euiC/wD6Pl1o+tQJPO56K3j6xt/E+MR/euiC/wD6Pl1o+tQJPO56K3j6xt/E+MR/euiC/wD6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-1.3693533 -0.08438069 0.6055412 ]\n [ 0.21346878 0.00315873 0.43465132]\n [ 0.21346878 0.00315873 0.43465132]\n [ 0.21346878 0.00315873 0.43465132]]", "desired_goal": "[[-1.5422264 0.15973254 0.39817795]\n [-0.4970972 0.4178009 0.35903868]\n [-1.2513735 -1.3289177 1.5697235 ]\n [-1.0090225 -1.0760901 0.88798016]]", "observation": "[[-1.3693533 -0.08438069 0.6055412 -0.6695208 -0.038744 1.427826 ]\n [ 0.21346878 0.00315873 0.43465132 0.47210458 -0.00169466 0.37645817]\n [ 0.21346878 0.00315873 0.43465132 0.47210458 -0.00169466 0.37645817]\n [ 0.21346878 0.00315873 0.43465132 0.47210458 -0.00169466 0.37645817]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA45c2Pbw5rT2uflE+ZC/9PH1eCz379mA8iIO9PXxFxb1hq3k95eLQvRiV0z1v6O48lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.04457844 0.08458278 0.2045848 ]\n [ 0.03090639 0.03402566 0.01373076]\n [ 0.09253603 -0.09632394 0.06095446]\n [-0.10199527 0.10331172 0.02916357]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv6ftIClrM1WMAWyUSwGMAXSUR0Cg0jP+wTufdX2UKGgGR7/GFSsKb8WLaAdLA2gIR0Cg0V6X8fmtdX2UKGgGR7/XlBQemvW6aAdLBWgIR0Cg0fDb8FY/dX2UKGgGR7+4sQNCqp97aAdLAmgIR0Cg0jxbr1M/dX2UKGgGR7/QOB19v0iAaAdLA2gIR0Cg0a3lbNbDdX2UKGgGR7+mK/Efkmx/aAdLAWgIR0Cg0bF9roGIdX2UKGgGR7/QxagVXV9XaAdLA2gIR0Cg0WojW07bdX2UKGgGR7+1hd+ocaOxaAdLAmgIR0Cg0kQA+6iCdX2UKGgGR7/LIGQjlgc+aAdLA2gIR0Cg0fyeZof0dX2UKGgGR7+XZsbedkJ8aAdLAWgIR0Cg0bXLNfPYdX2UKGgGR7/EkGA08/2TaAdLAmgIR0Cg0k3tBv74dX2UKGgGR7/Riu+yquKXaAdLA2gIR0Cg0XhjnV5KdX2UKGgGR7/Uz5XU6PsBaAdLA2gIR0Cg0gsxXXAedX2UKGgGR7/WyquKXOW0aAdLBGgIR0Cg0clMRHwxdX2UKGgGR7+/wAlv60pmaAdLAmgIR0Cg0YJuuRs/dX2UKGgGR7/H/KhcqvvCaAdLA2gIR0Cg0lztLL6ldX2UKGgGR7++svIwM6RyaAdLAmgIR0Cg0hWrGR3edX2UKGgGR7/Tn0TURWcSaAdLA2gIR0Cg0dudXko4dX2UKGgGR7/QKnvUjLSvaAdLA2gIR0Cg0m7hvR7adX2UKGgGR7/P6InBtUGWaAdLA2gIR0Cg0iePaL4vdX2UKGgGR7/S+n62v0ROaAdLBGgIR0Cg0ZmseXAudX2UKGgGR7/A2WIGhVU/aAdLAmgIR0Cg0nhSDRMOdX2UKGgGR7/TStvGZNO/aAdLA2gIR0Cg0jgrhBJJdX2UKGgGR7/TpTuOS4e+aAdLA2gIR0Cg0ao7V8TjdX2UKGgGR7/PrDZUT+NtaAdLA2gIR0Cg0oiiRGMGdX2UKGgGR7/htga3qiXZaAdLBmgIR0Cg0fqT8pCsdX2UKGgGR7/Qa72+PBBSaAdLA2gIR0Cg0bgkka/AdX2UKGgGR7/e6tT1kDp1aAdLBGgIR0Cg0ksNlRP5dX2UKGgGR7/QseXAuZkTaAdLA2gIR0Cg0pok7fYSdX2UKGgGR7+SjcmBvrGBaAdLAWgIR0Cg0lLOiWVvdX2UKGgGR7/LMdLg4wRHaAdLA2gIR0Cg0gx7qptKdX2UKGgGR7/clAeJYT0yaAdLBGgIR0Cg0c7fP5YYdX2UKGgGR7/RUG3WnTAnaAdLA2gIR0Cg0qkgfU4JdX2UKGgGR7/OBq9Gqgh9aAdLA2gIR0Cg0mH7HhjwdX2UKGgGR7/IH3UQTVUdaAdLA2gIR0Cg0huSwGGEdX2UKGgGR7+OnQ6ZH/cWaAdLAWgIR0Cg0dR8D0UXdX2UKGgGR7+w7aIvalDXaAdLAmgIR0Cg0m6Vt4zKdX2UKGgGR7/DLqUu+RHPaAdLAmgIR0Cg0ifsu3+ddX2UKGgGR7/CFQEZBLPEaAdLAmgIR0Cg0eDHGS6ldX2UKGgGR7/ZMXJo0ygxaAdLBGgIR0Cg0r9OymhudX2UKGgGR7+/L6k690zTaAdLAmgIR0Cg0ngBkqc3dX2UKGgGR7/Dygf2bobGaAdLAmgIR0Cg0jFPacqfdX2UKGgGR7/N7MxGlQ/HaAdLA2gIR0Cg0e6kZaV2dX2UKGgGR7+/+PzWf9P2aAdLAmgIR0Cg0jphnanKdX2UKGgGR7/JWiDdxhlUaAdLA2gIR0Cg0oeE7GNrdX2UKGgGR7/XPwNLDhtMaAdLBGgIR0Cg0tLwF1SwdX2UKGgGR7/HPgvUSZjQaAdLA2gIR0Cg0f1L8JlbdX2UKGgGR79+BQN0/4ZdaAdLAWgIR0Cg0tcTBZZCdX2UKGgGR7/OYaYNRWLhaAdLA2gIR0Cg0pMPBi1BdX2UKGgGR7/ZY/mknCwbaAdLBGgIR0Cg0kwx33YddX2UKGgGR7+yJ9Aood+5aAdLAmgIR0Cg0t6bWmP6dX2UKGgGR7+lgMMI/qxDaAdLAWgIR0Cg0pdAX2ugdX2UKGgGR7/c/D+BH09RaAdLBGgIR0Cg0hAl4TsZdX2UKGgGR7/MHTqjafz0aAdLA2gIR0Cg0u4Glhw3dX2UKGgGR7/J0+1SflIVaAdLA2gIR0Cg0qaFdszmdX2UKGgGR7/aTtsvZh8ZaAdLBGgIR0Cg0l/Tb349dX2UKGgGR7+Yw7DEWIoFaAdLAWgIR0Cg0qtBWxQjdX2UKGgGR7+/mFJxvNu+aAdLAmgIR0Cg0vcan753dX2UKGgGR7+3IvJzT4L1aAdLAmgIR0Cg0mjRc/t6dX2UKGgGR7/XcuanaWX1aAdLBGgIR0Cg0iHh86V/dX2UKGgGR7/M5sj3VTaTaAdLA2gIR0Cg0rqrq+rVdX2UKGgGR7+zRhMJx//eaAdLAmgIR0Cg0nPwVj7RdX2UKGgGR7+0ytV7x/d7aAdLAmgIR0Cg0iyqEOAidX2UKGgGR7/JZ+QU5+6RaAdLA2gIR0Cg0walLvkSdX2UKGgGR7/OjFhoduHfaAdLA2gIR0Cg0saSLZSOdX2UKGgGR7/HYg7o0Q9SaAdLA2gIR0Cg0n/bTMJQdX2UKGgGR7/H48EFGG21aAdLA2gIR0Cg0jjOkcjrdX2UKGgGR7/SPkJa7mMgaAdLA2gIR0Cg0xWVu76IdX2UKGgGR7+9jYqXnhbXaAdLAmgIR0Cg0tH+6y0KdX2UKGgGR7/BJNj9XLeRaAdLAmgIR0Cg0kPTw2ETdX2UKGgGR7+2eEqUeMhpaAdLAmgIR0Cg0x2/ag27dX2UKGgGR7+nhsImgJ1JaAdLAWgIR0Cg0tY46wMZdX2UKGgGR7/RZtelbeMyaAdLA2gIR0Cg0o9lEqlQdX2UKGgGR7+R95Qgs9SuaAdLAWgIR0Cg0tpKzzErdX2UKGgGR7+2I/JNj9XLaAdLAmgIR0Cg0yXPJJXhdX2UKGgGR7+jVawD/2kBaAdLAWgIR0Cg0t5HVf/ndX2UKGgGR7+5k4FRpDeCaAdLAmgIR0Cg0pd56dDqdX2UKGgGR7/NgEU0vXbuaAdLA2gIR0Cg0lBwuM/AdX2UKGgGR7+oSteUpuuSaAdLAWgIR0Cg0y0DEFW5dX2UKGgGR7+PechC+lCUaAdLAWgIR0Cg0uWBas6rdX2UKGgGR7+0AS39aUzLaAdLAmgIR0Cg0qJt78ekdX2UKGgGR7+13A2ycCo1aAdLAmgIR0Cg0zUO3DvWdX2UKGgGR7/GWJrLyMDPaAdLA2gIR0Cg0l8jzI3jdX2UKGgGR7/LMpw0fozOaAdLA2gIR0Cg0vFpoK2KdX2UKGgGR7/ETVUdaMaTaAdLAmgIR0Cg0qqpDNQkdX2UKGgGR7/RJcgQpWmxaAdLA2gIR0Cg00Lz5GjLdX2UKGgGR7/I3vQWvbGnaAdLA2gIR0Cg0rgvlEJCdX2UKGgGR7/eOZssQNCraAdLBGgIR0Cg0nDPGACodX2UKGgGR7/MfHPu5SWJaAdLA2gIR0Cg005HEuQIdX2UKGgGR7/fwpON5t3waAdLBWgIR0Cg0wb48EFGdX2UKGgGR7/Br0J4SpR5aAdLAmgIR0Cg0sArxy4ndX2UKGgGR7/DcMVk+X7caAdLAmgIR0Cg0njmjj7zdX2UKGgGR7/SXVbzK9wnaAdLA2gIR0Cg0s0cn3L3dX2UKGgGR7/ROskpqh11aAdLA2gIR0Cg0oYjbBXTdX2UKGgGR7/XqFyq+8GtaAdLBGgIR0Cg02ANG3F2dX2UKGgGR7/VKpkwvg3taAdLBGgIR0Cg0xiqyWzGdX2UKGgGR7+zKwIMSbpeaAdLAmgIR0Cg0o5aNdZ8dX2UKGgGR7++jfvWpZOjaAdLAmgIR0Cg0yDopx3ndX2UKGgGR7/Mn1nM+u/2aAdLA2gIR0Cg0tpjUd7wdX2UKGgGR7+U2LpA2Q4kaAdLAWgIR0Cg0pNfG+9KdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVYwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBaMBGZ1bmOUjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-6.6.56+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Nov 10 10:07:59 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.29.0", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e01f829cf8832c6d909603aeda1ae0be39f425ffb17c92af0728badd7b8dd4b
3
+ size 672599
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.260562239959836, "std_reward": 0.11843084589631056, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-02-17T21:30:10.978754"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4123be2f46ff5dc5413f0f591d072fea3b705935ab91c317875546d7443e028f
3
+ size 2623