Diffusers
yanxg commited on
Commit
fe6fd0b
·
verified ·
1 Parent(s): 7d92476

Upload model

Browse files
Files changed (3) hide show
  1. README.md +198 -0
  2. config.json +376 -0
  3. diffusion_pytorch_model.test1.safetensors +3 -0
README.md ADDED
@@ -0,0 +1,198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: diffusers
3
+ ---
4
+
5
+ # Model Card for Model ID
6
+
7
+ <!-- Provide a quick summary of what the model is/does. -->
8
+
9
+
10
+
11
+ ## Model Details
12
+
13
+ ### Model Description
14
+
15
+ <!-- Provide a longer summary of what this model is. -->
16
+
17
+ This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated.
18
+
19
+ - **Developed by:** [More Information Needed]
20
+ - **Funded by [optional]:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Dataset Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,376 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "Model",
3
+ "_diffusers_version": "0.32.2",
4
+ "_target_": "src.models.omages_flux.m0227_aekl_rgba_v1.Model",
5
+ "full_cfg": {
6
+ "callbacks": {
7
+ "vis": {
8
+ "_target_": "src.models.omages_flux.m0227_aekl_rgba_v1.Visualizer",
9
+ "every_n_epoch": 2,
10
+ "infer_steps": "250",
11
+ "load_compute": false,
12
+ "mode": "N2G",
13
+ "no_sanity_check": false,
14
+ "parallel_vis": true,
15
+ "visual_indices": [
16
+ 0,
17
+ 1,
18
+ 2,
19
+ 3
20
+ ]
21
+ }
22
+ },
23
+ "datamodule_opt": {
24
+ "_target_": "src.datamodule.DataModule",
25
+ "batch_size": 2,
26
+ "num_workers": 4,
27
+ "test_batch_size": 2,
28
+ "testset_opt": {
29
+ "_target_": "src.models.omages_flux.m0227_aekl_rgba_v1.ModelDset",
30
+ "cache_root": "/home/xya120/studio/datasets/ABO/somages/v3v1/.m0227_aekl_rgba_v1_test/",
31
+ "data_root": "/home/xya120/studio/datasets/ABO/somages/v3v1/",
32
+ "downsample": 2,
33
+ "duplicate": 1,
34
+ "max_n_patch": 32,
35
+ "max_seq_len": 4096,
36
+ "metadf_path": "/home/xya120/studio/datasets/ABO/somages/df_p512_m002_.8sqrtrescale_meta.json",
37
+ "mode": "allcateval10|ace10transpose",
38
+ "no_cache": true
39
+ },
40
+ "trainset_opt": {
41
+ "_target_": "src.models.omages_flux.m0227_aekl_rgba_v1.ModelDset",
42
+ "cache_root": "/home/xya120/studio/datasets/ABO/somages/v3v1/.m0227_aekl_rgba_v1/",
43
+ "data_root": "/home/xya120/studio/datasets/ABO/somages/v3v1/",
44
+ "downsample": 2,
45
+ "duplicate": 1,
46
+ "metadf_path": "/home/xya120/studio/datasets/ABO/somages/df_p512_m002_.8sqrtrescale_meta.json",
47
+ "mode": "",
48
+ "no_cache": true
49
+ }
50
+ },
51
+ "expr_name": "somages/m0227_aekl_rgba_v1",
52
+ "meta_info": {
53
+ "checkpoints_dir": "/home/xya120/studio/omages_internal/experiments/somages/m0227_aekl_rgba_v1/checkpoints",
54
+ "datasets_dir": "/home/xya120/studio/omages_internal/datasets/",
55
+ "experiments_dir": "/home/xya120/studio/omages_internal/experiments/",
56
+ "expr_dir": "/home/xya120/studio/omages_internal/experiments/somages/m0227_aekl_rgba_v1",
57
+ "logs_dir": "/home/xya120/studio/omages_internal/experiments/somages/m0227_aekl_rgba_v1/logs",
58
+ "results_dir": "/home/xya120/studio/omages_internal/experiments/somages/m0227_aekl_rgba_v1/results",
59
+ "session_name": "somages/m0227_aekl_rgba_v1_250313_2124",
60
+ "src_dir": "/home/xya120/studio/omages_internal/src"
61
+ },
62
+ "pl_model_opt": {
63
+ "_target_": "src.models.omages_flux.m0227_aekl_rgba_v1.Model",
64
+ "full_opt": {
65
+ "callbacks": {
66
+ "vis": {
67
+ "_target_": "src.models.omages_flux.m0227_aekl_rgba_v1.Visualizer",
68
+ "every_n_epoch": 2,
69
+ "infer_steps": "250",
70
+ "load_compute": false,
71
+ "mode": "N2G",
72
+ "no_sanity_check": false,
73
+ "parallel_vis": true,
74
+ "visual_indices": [
75
+ 0,
76
+ 1,
77
+ 2,
78
+ 3
79
+ ]
80
+ }
81
+ },
82
+ "datamodule_opt": {
83
+ "_target_": "src.datamodule.DataModule",
84
+ "batch_size": 2,
85
+ "num_workers": 4,
86
+ "test_batch_size": 2,
87
+ "testset_opt": {
88
+ "_target_": "src.models.omages_flux.m0227_aekl_rgba_v1.ModelDset",
89
+ "cache_root": "/home/xya120/studio/datasets/ABO/somages/v3v1/.m0227_aekl_rgba_v1_test/",
90
+ "data_root": "/home/xya120/studio/datasets/ABO/somages/v3v1/",
91
+ "downsample": 2,
92
+ "duplicate": 1,
93
+ "max_n_patch": 32,
94
+ "max_seq_len": 4096,
95
+ "metadf_path": "/home/xya120/studio/datasets/ABO/somages/df_p512_m002_.8sqrtrescale_meta.json",
96
+ "mode": "allcateval10|ace10transpose",
97
+ "no_cache": true
98
+ },
99
+ "trainset_opt": {
100
+ "_target_": "src.models.omages_flux.m0227_aekl_rgba_v1.ModelDset",
101
+ "cache_root": "/home/xya120/studio/datasets/ABO/somages/v3v1/.m0227_aekl_rgba_v1/",
102
+ "data_root": "/home/xya120/studio/datasets/ABO/somages/v3v1/",
103
+ "downsample": 2,
104
+ "duplicate": 1,
105
+ "metadf_path": "/home/xya120/studio/datasets/ABO/somages/df_p512_m002_.8sqrtrescale_meta.json",
106
+ "mode": "",
107
+ "no_cache": true
108
+ }
109
+ },
110
+ "expr_name": "somages/m0227_aekl_rgba_v1",
111
+ "meta_info": {
112
+ "checkpoints_dir": "/home/xya120/studio/omages_internal/experiments/somages/m0227_aekl_rgba_v1/checkpoints",
113
+ "datasets_dir": "/home/xya120/studio/omages_internal/datasets/",
114
+ "experiments_dir": "/home/xya120/studio/omages_internal/experiments/",
115
+ "expr_dir": "/home/xya120/studio/omages_internal/experiments/somages/m0227_aekl_rgba_v1",
116
+ "logs_dir": "/home/xya120/studio/omages_internal/experiments/somages/m0227_aekl_rgba_v1/logs",
117
+ "results_dir": "/home/xya120/studio/omages_internal/experiments/somages/m0227_aekl_rgba_v1/results",
118
+ "session_name": "somages/m0227_aekl_rgba_v1_250313_2124",
119
+ "src_dir": "/home/xya120/studio/omages_internal/src"
120
+ },
121
+ "pl_model_opt": {
122
+ "_target_": "src.models.omages_flux.m0227_aekl_rgba_v1.Model",
123
+ "model": {
124
+ "network": {
125
+ "channel_input": 3,
126
+ "channel_output": 3,
127
+ "debug_boundary": false,
128
+ "model_id": "black-forest-labs/FLUX.1-schnell",
129
+ "train_encoder": true
130
+ },
131
+ "optimizer": {
132
+ "_target_": "torch.optim.AdamW",
133
+ "lr": 1e-05
134
+ },
135
+ "scheduler": {
136
+ "T_max": 600,
137
+ "_target_": "torch.optim.lr_scheduler.CosineAnnealingLR",
138
+ "eta_min": 1e-07
139
+ }
140
+ }
141
+ },
142
+ "pltrainer_opt": {
143
+ "accelerator": "auto",
144
+ "auto_lr_find": false,
145
+ "check_val_every_n_epoch": 2,
146
+ "checkpoint_monitor": "val/loss",
147
+ "copy_ckpt_from": "",
148
+ "disable_auto_lr_scale": false,
149
+ "early_stop_patience": 1000,
150
+ "extra_kwargs": {
151
+ "enable_model_summary": true,
152
+ "num_sanity_val_steps": 0,
153
+ "precision": "16-mixed"
154
+ },
155
+ "fast_dev_run": false,
156
+ "gpus": [
157
+ 0
158
+ ],
159
+ "gradient_clip_val": null,
160
+ "logger": "wandb",
161
+ "logger_kwargs": {
162
+ "mode": "online",
163
+ "notes": "aekl_geometry",
164
+ "tags": [
165
+ "aekl_geometry"
166
+ ]
167
+ },
168
+ "max_epochs": 600,
169
+ "max_time": null,
170
+ "min_epochs": 1,
171
+ "precision": "32-true",
172
+ "resume_from": "resume",
173
+ "seed": 314,
174
+ "strategy": "ddp_find_unused_parameters_true",
175
+ "strict_loading": true,
176
+ "use_tensorcores": true,
177
+ "wandb_silent": false
178
+ },
179
+ "project_name": "omg"
180
+ },
181
+ "model": {
182
+ "network": {
183
+ "channel_input": 3,
184
+ "channel_output": 3,
185
+ "debug_boundary": false,
186
+ "model_id": "black-forest-labs/FLUX.1-schnell",
187
+ "train_encoder": true
188
+ },
189
+ "optimizer": {
190
+ "_target_": "torch.optim.AdamW",
191
+ "lr": 1e-05
192
+ },
193
+ "scheduler": {
194
+ "T_max": 600,
195
+ "_target_": "torch.optim.lr_scheduler.CosineAnnealingLR",
196
+ "eta_min": 1e-07
197
+ }
198
+ }
199
+ },
200
+ "pltrainer_opt": {
201
+ "accelerator": "auto",
202
+ "auto_lr_find": false,
203
+ "check_val_every_n_epoch": 2,
204
+ "checkpoint_monitor": "val/loss",
205
+ "copy_ckpt_from": "",
206
+ "disable_auto_lr_scale": false,
207
+ "early_stop_patience": 1000,
208
+ "extra_kwargs": {
209
+ "enable_model_summary": true,
210
+ "num_sanity_val_steps": 0,
211
+ "precision": "16-mixed"
212
+ },
213
+ "fast_dev_run": false,
214
+ "gpus": [
215
+ 0
216
+ ],
217
+ "gradient_clip_val": null,
218
+ "logger": "wandb",
219
+ "logger_kwargs": {
220
+ "mode": "online",
221
+ "notes": "aekl_geometry",
222
+ "tags": [
223
+ "aekl_geometry"
224
+ ]
225
+ },
226
+ "max_epochs": 600,
227
+ "max_time": null,
228
+ "min_epochs": 1,
229
+ "precision": "32-true",
230
+ "resume_from": "resume",
231
+ "seed": 314,
232
+ "strategy": "ddp_find_unused_parameters_true",
233
+ "strict_loading": true,
234
+ "use_tensorcores": true,
235
+ "wandb_silent": false
236
+ },
237
+ "project_name": "omg"
238
+ },
239
+ "full_opt": {
240
+ "callbacks": {
241
+ "vis": {
242
+ "_target_": "src.models.omages_flux.m0227_aekl_rgba_v1.Visualizer",
243
+ "every_n_epoch": 2,
244
+ "infer_steps": "250",
245
+ "load_compute": false,
246
+ "mode": "N2G",
247
+ "no_sanity_check": false,
248
+ "parallel_vis": true,
249
+ "visual_indices": [
250
+ 0,
251
+ 1,
252
+ 2,
253
+ 3
254
+ ]
255
+ }
256
+ },
257
+ "datamodule_opt": {
258
+ "_target_": "src.datamodule.DataModule",
259
+ "batch_size": 2,
260
+ "num_workers": 4,
261
+ "test_batch_size": 2,
262
+ "testset_opt": {
263
+ "_target_": "src.models.omages_flux.m0227_aekl_rgba_v1.ModelDset",
264
+ "cache_root": "/home/xya120/studio/datasets/ABO/somages/v3v1/.m0227_aekl_rgba_v1_test/",
265
+ "data_root": "/home/xya120/studio/datasets/ABO/somages/v3v1/",
266
+ "downsample": 2,
267
+ "duplicate": 1,
268
+ "max_n_patch": 32,
269
+ "max_seq_len": 4096,
270
+ "metadf_path": "/home/xya120/studio/datasets/ABO/somages/df_p512_m002_.8sqrtrescale_meta.json",
271
+ "mode": "allcateval10|ace10transpose",
272
+ "no_cache": true
273
+ },
274
+ "trainset_opt": {
275
+ "_target_": "src.models.omages_flux.m0227_aekl_rgba_v1.ModelDset",
276
+ "cache_root": "/home/xya120/studio/datasets/ABO/somages/v3v1/.m0227_aekl_rgba_v1/",
277
+ "data_root": "/home/xya120/studio/datasets/ABO/somages/v3v1/",
278
+ "downsample": 2,
279
+ "duplicate": 1,
280
+ "metadf_path": "/home/xya120/studio/datasets/ABO/somages/df_p512_m002_.8sqrtrescale_meta.json",
281
+ "mode": "",
282
+ "no_cache": true
283
+ }
284
+ },
285
+ "expr_name": "somages/m0227_aekl_rgba_v1",
286
+ "meta_info": {
287
+ "checkpoints_dir": "/home/xya120/studio/omages_internal/experiments/somages/m0227_aekl_rgba_v1/checkpoints",
288
+ "datasets_dir": "/home/xya120/studio/omages_internal/datasets/",
289
+ "experiments_dir": "/home/xya120/studio/omages_internal/experiments/",
290
+ "expr_dir": "/home/xya120/studio/omages_internal/experiments/somages/m0227_aekl_rgba_v1",
291
+ "logs_dir": "/home/xya120/studio/omages_internal/experiments/somages/m0227_aekl_rgba_v1/logs",
292
+ "results_dir": "/home/xya120/studio/omages_internal/experiments/somages/m0227_aekl_rgba_v1/results",
293
+ "session_name": "somages/m0227_aekl_rgba_v1_250313_2124",
294
+ "src_dir": "/home/xya120/studio/omages_internal/src"
295
+ },
296
+ "pl_model_opt": {
297
+ "_target_": "src.models.omages_flux.m0227_aekl_rgba_v1.Model",
298
+ "model": {
299
+ "network": {
300
+ "channel_input": 3,
301
+ "channel_output": 3,
302
+ "debug_boundary": false,
303
+ "model_id": "black-forest-labs/FLUX.1-schnell",
304
+ "train_encoder": true
305
+ },
306
+ "optimizer": {
307
+ "_target_": "torch.optim.AdamW",
308
+ "lr": 1e-05
309
+ },
310
+ "scheduler": {
311
+ "T_max": 600,
312
+ "_target_": "torch.optim.lr_scheduler.CosineAnnealingLR",
313
+ "eta_min": 1e-07
314
+ }
315
+ }
316
+ },
317
+ "pltrainer_opt": {
318
+ "accelerator": "auto",
319
+ "auto_lr_find": false,
320
+ "check_val_every_n_epoch": 2,
321
+ "checkpoint_monitor": "val/loss",
322
+ "copy_ckpt_from": "",
323
+ "disable_auto_lr_scale": false,
324
+ "early_stop_patience": 1000,
325
+ "extra_kwargs": {
326
+ "enable_model_summary": true,
327
+ "num_sanity_val_steps": 0,
328
+ "precision": "16-mixed"
329
+ },
330
+ "fast_dev_run": false,
331
+ "gpus": [
332
+ 0
333
+ ],
334
+ "gradient_clip_val": null,
335
+ "logger": "wandb",
336
+ "logger_kwargs": {
337
+ "mode": "online",
338
+ "notes": "aekl_geometry",
339
+ "tags": [
340
+ "aekl_geometry"
341
+ ]
342
+ },
343
+ "max_epochs": 600,
344
+ "max_time": null,
345
+ "min_epochs": 1,
346
+ "precision": "32-true",
347
+ "resume_from": "resume",
348
+ "seed": 314,
349
+ "strategy": "ddp_find_unused_parameters_true",
350
+ "strict_loading": true,
351
+ "use_tensorcores": true,
352
+ "wandb_silent": false
353
+ },
354
+ "project_name": "omg"
355
+ },
356
+ "load_model_subfolder": true,
357
+ "model": {
358
+ "network": {
359
+ "channel_input": 3,
360
+ "channel_output": 3,
361
+ "debug_boundary": false,
362
+ "model_id": "black-forest-labs/FLUX.1-schnell",
363
+ "train_encoder": true
364
+ },
365
+ "optimizer": {
366
+ "_target_": "torch.optim.AdamW",
367
+ "lr": 1e-05
368
+ },
369
+ "scheduler": {
370
+ "T_max": 600,
371
+ "_target_": "torch.optim.lr_scheduler.CosineAnnealingLR",
372
+ "eta_min": 1e-07
373
+ }
374
+ },
375
+ "scaling_factor": 0.01
376
+ }
diffusion_pytorch_model.test1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5807f933a8c8abcb0f20e69c9e87e7a4cf7a1a1299dd6cb275c1a853968bf7d
3
+ size 335307188