File size: 16,347 Bytes
951d8ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
import copy
import time
from typing import Any, Dict, List, Optional, Tuple, Union
import hydra
from pydantic import root_validator
from langchain import LLMChain, PromptTemplate
from langchain.agents import AgentExecutor, BaseMultiActionAgent, ZeroShotAgent
from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS, PREFIX, SUFFIX
from langchain.chat_models import ChatOpenAI
from langchain.schema import (
AgentAction,
AgentFinish,
OutputParserException,
)
from flows.base_flows import Flow, CompositeFlow, GenericLCTool
from flows.messages import OutputMessage, UpdateMessage_Generic
from flows.utils.caching_utils import flow_run_cache
class GenericZeroShotAgent(ZeroShotAgent):
@classmethod
def create_prompt(
cls,
tools: Dict[str, Flow],
prefix: str = PREFIX,
suffix: str = SUFFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
) -> PromptTemplate:
"""Create prompt in the style of the zero shot agent.
Args:
tools: List of tools the agent will have access to, used to format the
prompt.
prefix: String to put before the list of tools.
suffix: String to put after the list of tools.
input_variables: List of input variables the final prompt will expect.
Returns:
A PromptTemplate with the template assembled from the pieces here.
"""
# tool_strings = "\n".join([f"{tool.name}: {tool.description}" for tool in tools])
# tool_names = ", ".join([tool.name for tool in tools])
tool_strings = "\n".join([f"{tool_name}: {tool.flow_config['description']}" for tool_name, tool in tools.items()])
tool_names = ", ".join(tools.keys())
format_instructions = format_instructions.format(tool_names=tool_names)
template = "\n\n".join([prefix, tool_strings, format_instructions, suffix])
if input_variables is None:
input_variables = ["input", "agent_scratchpad"]
return PromptTemplate(template=template, input_variables=input_variables)
class GenericAgentExecutor(AgentExecutor):
tools: Dict[str, Flow]
@root_validator()
def validate_tools(cls, values: Dict) -> Dict:
"""Validate that tools are compatible with agent."""
agent = values["agent"]
tools = values["tools"]
allowed_tools = agent.get_allowed_tools()
if allowed_tools is not None:
if set(allowed_tools) != set(tools.keys()):
raise ValueError(
f"Allowed tools ({allowed_tools}) different than "
f"provided tools ({tools.keys()})"
)
return values
@root_validator()
def validate_return_direct_tool(cls, values: Dict) -> Dict:
"""Validate that tools are compatible with agent."""
agent = values["agent"]
tools = values["tools"]
if isinstance(agent, BaseMultiActionAgent):
for tool in tools:
if tool.flow_config["return_direct"]:
raise ValueError(
"Tools that have `return_direct=True` are not allowed "
"in multi-action agents"
)
return values
def _get_tool_return(
self, next_step_output: Tuple[AgentAction, str]
) -> Optional[AgentFinish]:
"""Check if the tool is a returning tool."""
agent_action, observation = next_step_output
# name_to_tool_map = {tool.name: tool for tool in self.tools}
# Invalid tools won't be in the map, so we return False.
if agent_action.tool in self.tools:
if self.tools[agent_action.tool].flow_config["return_direct"]:
return AgentFinish(
{self.agent.return_values[0]: observation},
"",
)
return None
class ReActFlow(CompositeFlow):
EXCEPTION_FLOW_CONFIG = {
"_target_": "flows.base_flows.GenericLCTool.instantiate_from_config",
"config": {
"name": "_Exception",
"description": "Exception tool",
"tool_type": "exception",
"input_keys": ["query"],
"output_keys": ["raw_response"],
"verbose": False,
"clear_flow_namespace_on_run_end": False,
"input_data_transformations": [],
"output_data_transformations": [],
"keep_raw_response": True
}
}
INVALID_FLOW_CONFIG = {
"_target_": "flows.base_flows.GenericLCTool.instantiate_from_config",
"config": {
"name": "invalid_tool",
"description": "Called when tool name is invalid.",
"tool_type": "invalid",
"input_keys": ["tool_name"],
"output_keys": ["raw_response"],
"verbose": False,
"clear_flow_namespace_on_run_end": False,
"input_data_transformations": [],
"output_data_transformations": [],
"keep_raw_response": True
}
}
SUPPORTS_CACHING: bool = True
api_keys: Dict[str, str]
backend: GenericAgentExecutor
react_prompt_template: PromptTemplate
exception_flow: GenericLCTool
invalid_flow: GenericLCTool
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.api_keys = None
self.backend = None
self.react_prompt_template = GenericZeroShotAgent.create_prompt(
tools=self.subflows,
**self.flow_config.get("prompt_config", {})
)
self._set_up_necessary_subflows()
def set_up_flow_state(self):
super().set_up_flow_state()
self.flow_state["intermediate_steps"]: List[Tuple[AgentAction, str]] = []
def _set_up_necessary_subflows(self):
self.exception_flow = hydra.utils.instantiate(
self.EXCEPTION_FLOW_CONFIG, _convert_="partial", _recursive_=False
)
self.invalid_flow = hydra.utils.instantiate(
self.INVALID_FLOW_CONFIG, _convert_="partial", _recursive_=False
)
def _get_prompt_message(self, input_data: Dict[str, Any]) -> str:
data = copy.deepcopy(input_data)
data["agent_scratchpad"] = "{agent_scratchpad}" # dummy value for agent scratchpad
return self.react_prompt_template.format(**data)
@staticmethod
def get_raw_response(output: OutputMessage) -> str:
key = output.data["output_keys"][0]
return output.data["output_data"]["raw_response"][key]
def _take_next_step(
self,
# name_to_tool_map: Dict[str, BaseTool],
# color_mapping: Dict[str, str],
inputs: Dict[str, str],
intermediate_steps: List[Tuple[AgentAction, str]],
# run_manager: Optional[CallbackManagerForChainRun] = None,
# input_data: Dict[str, Any],
private_keys: Optional[List[str]] = [],
keys_to_ignore_for_hash: Optional[List[str]] = []
) -> Union[AgentFinish, List[Tuple[AgentAction, str]]]:
"""Take a single step in the thought-action-observation loop.
Override this to take control of how the agent makes and acts on choices.
"""
try:
# Call the LLM to see what to do.
output = self.backend.agent.plan(
intermediate_steps,
# callbacks=run_manager.get_child() if run_manager else None,
**inputs,
)
except OutputParserException as e:
if isinstance(self.backend.handle_parsing_errors, bool):
raise_error = not self.backend.handle_parsing_errors
else:
raise_error = False
if raise_error:
raise e
text = str(e)
if isinstance(self.backend.handle_parsing_errors, bool):
if e.send_to_llm:
observation = str(e.observation)
text = str(e.llm_output)
else:
observation = "Invalid or incomplete response"
elif isinstance(self.backend.handle_parsing_errors, str):
observation = self.backend.handle_parsing_errors
elif callable(self.backend.handle_parsing_errors):
observation = self.backend.handle_parsing_errors(e)
else:
raise ValueError("Got unexpected type of `handle_parsing_errors`")
output = AgentAction("_Exception", observation, text)
# if run_manager:
# run_manager.on_agent_action(output, color="green")
# tool_run_kwargs = self.backend.agent.tool_run_logging_kwargs()
# observation = ExceptionTool().run(
# output.tool_input,
# verbose=self.verbose,
# color=None,
# callbacks=run_manager.get_child() if run_manager else None,
# **tool_run_kwargs,
# )
self._state_update_dict({"query": output.tool_input})
tool_output = self._call_flow_from_state(
self.exception_flow,
private_keys=private_keys,
keys_to_ignore_for_hash=keys_to_ignore_for_hash,
search_class_namespace_for_inputs=False
)
observation = self.get_raw_response(tool_output)
return [(output, observation)]
# If the tool chosen is the finishing tool, then we end and return.
if isinstance(output, AgentFinish):
return output
actions: List[AgentAction]
if isinstance(output, AgentAction):
actions = [output]
else:
actions = output
result = []
for agent_action in actions:
# if run_manager:
# run_manager.on_agent_action(agent_action, color="green")
# Otherwise we lookup the tool
if agent_action.tool in self.subflows:
tool = self.subflows[agent_action.tool]
if isinstance(agent_action.tool_input, dict):
self._state_update_dict(agent_action.tool_input)
else:
self._state_update_dict({tool.flow_config["input_keys"][0]:agent_action.tool_input})
tool_output = self._call_flow_from_state(
tool,
private_keys=private_keys,
keys_to_ignore_for_hash=keys_to_ignore_for_hash,
search_class_namespace_for_inputs=False
)
observation = self.get_raw_response(tool_output)
# return_direct = tool.return_direct
# color = color_mapping[agent_action.tool]
# tool_run_kwargs = self.backend.agent.tool_run_logging_kwargs()
# if return_direct:
# tool_run_kwargs["llm_prefix"] = ""
# We then call the tool on the tool input to get an observation
# observation = tool.run(
# agent_action.tool_input,
# verbose=self.verbose,
# color=color,
# callbacks=run_manager.get_child() if run_manager else None,
# **tool_run_kwargs,
# )
else:
# tool_run_kwargs = self.backend.agent.tool_run_logging_kwargs()
# observation = InvalidTool().run(
# agent_action.tool,
# verbose=self.verbose,
# color=None,
# callbacks=run_manager.get_child() if run_manager else None,
# **tool_run_kwargs,
# )
self._state_update_dict({"tool_name": agent_action.tool})
tool_output = self._call_flow_from_state(
self.invalid_flow,
private_keys=private_keys,
keys_to_ignore_for_hash=keys_to_ignore_for_hash,
search_class_namespace_for_inputs=False
)
observation = self.get_raw_response(tool_output)
result.append((agent_action, observation))
return result
def _run(
self,
input_data: Dict[str, Any],
private_keys: Optional[List[str]] = [],
keys_to_ignore_for_hash: Optional[List[str]] = []
) -> str:
"""Run text through and get agent response."""
# Construct a mapping of tool name to tool for easy lookup
# name_to_tool_map = {tool.name: tool for tool in self.tools}
# We construct a mapping from each tool to a color, used for logging.
# color_mapping = get_color_mapping(
# [tool.name for tool in self.tools], excluded_colors=["green", "red"]
# )
self.flow_state["intermediate_steps"] = []
intermediate_steps = self.flow_state["intermediate_steps"]
# Let's start tracking the number of iterations and time elapsed
iterations = 0
time_elapsed = 0.0
start_time = time.time()
# We now enter the agent loop (until it returns something).
while self.backend._should_continue(iterations, time_elapsed):
# next_step_output = self._take_next_step(
# name_to_tool_map,
# color_mapping,
# inputs,
# intermediate_steps,
# run_manager=run_manager,
# )
next_step_output = self._take_next_step(
input_data,
intermediate_steps,
private_keys,
keys_to_ignore_for_hash
)
if isinstance(next_step_output, AgentFinish):
# TODO: f"{self.backend.agent.llm_prefix} {next_step_output.log}"
return next_step_output.return_values["output"]
intermediate_steps.extend(next_step_output)
for act, obs in next_step_output:
pass # TODO
# f"{self.backend.agent.llm_prefix} {act.log}"
# f"{self.backend.agent.observation_prefix}{obs}"
if len(next_step_output) == 1:
next_step_action = next_step_output[0]
# See if tool should return directly
tool_return = self.backend._get_tool_return(next_step_action)
if tool_return is not None:
# same as the observation
return tool_return.return_values["output"]
iterations += 1
time_elapsed = time.time() - start_time
output = self.backend.agent.return_stopped_response(
self.backend.early_stopping_method, intermediate_steps, **input_data
)
return output.return_values["output"]
@flow_run_cache()
def run(
self,
input_data: Dict[str, Any],
private_keys: Optional[List[str]] = [],
keys_to_ignore_for_hash: Optional[List[str]] = []
) -> Dict[str, Any]:
self.api_keys = input_data["api_keys"]
del input_data["api_keys"]
llm = ChatOpenAI(
model_name=self.flow_config["model_name"],
openai_api_key=self.api_keys["openai"],
**self.flow_config["generation_parameters"],
)
llm_chain = LLMChain(llm=llm, prompt=self.react_prompt_template)
agent = GenericZeroShotAgent(llm_chain=llm_chain, allowed_tools=list(self.subflows.keys()))
self.backend = GenericAgentExecutor.from_agent_and_tools(
agent=agent,
tools=self.subflows,
max_iterations=self.flow_config.get("max_iterations", 15),
max_execution_time=self.flow_config.get("max_execution_time")
)
data = {k: input_data[k] for k in self.get_input_keys(input_data)}
# TODO
# prompt = UpdateMessage_Generic(
# created_by=self.flow_config["name"],
# updated_flow=self.flow_config["name"],
# content=self._get_prompt_message(data)
# )
# self._log_message(prompt)
output = self._run(data, private_keys, keys_to_ignore_for_hash)
return {input_data["output_keys"][0]: output}
|