File size: 98,114 Bytes
0b14d5b 7722ca3 4e999cc 7722ca3 4e999cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
---
license: mit
---
# Model description 1
[More Information Needed]
## Intended uses & limitations
[More Information Needed]
## Training Procedure
### Hyperparameters
The model is trained with below hyperparameters.
<details>
<summary> Click to expand </summary>
| Hyperparameter | Value |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| memory | |
| steps | [('transformation', ColumnTransformer(transformers=[('loading_missing_value_imputer',<br /> SimpleImputer(), ['loading']),<br /> ('numerical_missing_value_imputer',<br /> SimpleImputer(),<br /> ['loading', 'measurement_3', 'measurement_4',<br /> 'measurement_5', 'measurement_6',<br /> 'measurement_7', 'measurement_8',<br /> 'measurement_9', 'measurement_10',<br /> 'measurement_11', 'measurement_12',<br /> 'measurement_13', 'measurement_14',<br /> 'measurement_15', 'measurement_16',<br /> 'measurement_17']),<br /> ('attribute_0_encoder', OneHotEncoder(),<br /> ['attribute_0']),<br /> ('attribute_1_encoder', OneHotEncoder(),<br /> ['attribute_1']),<br /> ('product_code_encoder', OneHotEncoder(),<br /> ['product_code'])])), ('model', DecisionTreeClassifier(max_depth=4))] |
| verbose | False |
| transformation | ColumnTransformer(transformers=[('loading_missing_value_imputer',<br /> SimpleImputer(), ['loading']),<br /> ('numerical_missing_value_imputer',<br /> SimpleImputer(),<br /> ['loading', 'measurement_3', 'measurement_4',<br /> 'measurement_5', 'measurement_6',<br /> 'measurement_7', 'measurement_8',<br /> 'measurement_9', 'measurement_10',<br /> 'measurement_11', 'measurement_12',<br /> 'measurement_13', 'measurement_14',<br /> 'measurement_15', 'measurement_16',<br /> 'measurement_17']),<br /> ('attribute_0_encoder', OneHotEncoder(),<br /> ['attribute_0']),<br /> ('attribute_1_encoder', OneHotEncoder(),<br /> ['attribute_1']),<br /> ('product_code_encoder', OneHotEncoder(),<br /> ['product_code'])]) |
| model | DecisionTreeClassifier(max_depth=4) |
| transformation__n_jobs | |
| transformation__remainder | drop |
| transformation__sparse_threshold | 0.3 |
| transformation__transformer_weights | |
| transformation__transformers | [('loading_missing_value_imputer', SimpleImputer(), ['loading']), ('numerical_missing_value_imputer', SimpleImputer(), ['loading', 'measurement_3', 'measurement_4', 'measurement_5', 'measurement_6', 'measurement_7', 'measurement_8', 'measurement_9', 'measurement_10', 'measurement_11', 'measurement_12', 'measurement_13', 'measurement_14', 'measurement_15', 'measurement_16', 'measurement_17']), ('attribute_0_encoder', OneHotEncoder(), ['attribute_0']), ('attribute_1_encoder', OneHotEncoder(), ['attribute_1']), ('product_code_encoder', OneHotEncoder(), ['product_code'])] |
| transformation__verbose | False |
| transformation__verbose_feature_names_out | True |
| transformation__loading_missing_value_imputer | SimpleImputer() |
| transformation__numerical_missing_value_imputer | SimpleImputer() |
| transformation__attribute_0_encoder | OneHotEncoder() |
| transformation__attribute_1_encoder | OneHotEncoder() |
| transformation__product_code_encoder | OneHotEncoder() |
| transformation__loading_missing_value_imputer__add_indicator | False |
| transformation__loading_missing_value_imputer__copy | True |
| transformation__loading_missing_value_imputer__fill_value | |
| transformation__loading_missing_value_imputer__missing_values | nan |
| transformation__loading_missing_value_imputer__strategy | mean |
| transformation__loading_missing_value_imputer__verbose | 0 |
| transformation__numerical_missing_value_imputer__add_indicator | False |
| transformation__numerical_missing_value_imputer__copy | True |
| transformation__numerical_missing_value_imputer__fill_value | |
| transformation__numerical_missing_value_imputer__missing_values | nan |
| transformation__numerical_missing_value_imputer__strategy | mean |
| transformation__numerical_missing_value_imputer__verbose | 0 |
| transformation__attribute_0_encoder__categories | auto |
| transformation__attribute_0_encoder__drop | |
| transformation__attribute_0_encoder__dtype | <class 'numpy.float64'> |
| transformation__attribute_0_encoder__handle_unknown | error |
| transformation__attribute_0_encoder__sparse | True |
| transformation__attribute_1_encoder__categories | auto |
| transformation__attribute_1_encoder__drop | |
| transformation__attribute_1_encoder__dtype | <class 'numpy.float64'> |
| transformation__attribute_1_encoder__handle_unknown | error |
| transformation__attribute_1_encoder__sparse | True |
| transformation__product_code_encoder__categories | auto |
| transformation__product_code_encoder__drop | |
| transformation__product_code_encoder__dtype | <class 'numpy.float64'> |
| transformation__product_code_encoder__handle_unknown | error |
| transformation__product_code_encoder__sparse | True |
| model__ccp_alpha | 0.0 |
| model__class_weight | |
| model__criterion | gini |
| model__max_depth | 4 |
| model__max_features | |
| model__max_leaf_nodes | |
| model__min_impurity_decrease | 0.0 |
| model__min_samples_leaf | 1 |
| model__min_samples_split | 2 |
| model__min_weight_fraction_leaf | 0.0 |
| model__random_state | |
| model__splitter | best |
</details>
### Model Plot
The model plot is below.
<style>#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 {color: black;background-color: white;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 pre{padding: 0;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-toggleable {background-color: white;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-estimator:hover {background-color: #d4ebff;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-item {z-index: 1;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-parallel-item:only-child::after {width: 0;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-text-repr-fallback {display: none;}</style><div id="sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('transformation',ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(),['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3','measurement_4','measurement_5','measurement_6','measurement_7','measurement_8','measurement_9','measurement_10','measurement_11','measurement_12','measurement_13','measurement_14','measurement_15','measurement_16','measurement_17']),('attribute_0_encoder',OneHotEncoder(),['attribute_0']),('attribute_1_encoder',OneHotEncoder(),['attribute_1']),('product_code_encoder',OneHotEncoder(),['product_code'])])),('model', DecisionTreeClassifier(max_depth=4))])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="f3a0413c-728e-4fd9-bbd8-5c6ec5312931" type="checkbox" ><label for="f3a0413c-728e-4fd9-bbd8-5c6ec5312931" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[('transformation',ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(),['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3','measurement_4','measurement_5','measurement_6','measurement_7','measurement_8','measurement_9','measurement_10','measurement_11','measurement_12','measurement_13','measurement_14','measurement_15','measurement_16','measurement_17']),('attribute_0_encoder',OneHotEncoder(),['attribute_0']),('attribute_1_encoder',OneHotEncoder(),['attribute_1']),('product_code_encoder',OneHotEncoder(),['product_code'])])),('model', DecisionTreeClassifier(max_depth=4))])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="3f892f74-5115-4ab0-9c64-f760f11a7cbe" type="checkbox" ><label for="3f892f74-5115-4ab0-9c64-f760f11a7cbe" class="sk-toggleable__label sk-toggleable__label-arrow">transformation: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(), ['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3', 'measurement_4','measurement_5', 'measurement_6','measurement_7', 'measurement_8','measurement_9', 'measurement_10','measurement_11', 'measurement_12','measurement_13', 'measurement_14','measurement_15', 'measurement_16','measurement_17']),('attribute_0_encoder', OneHotEncoder(),['attribute_0']),('attribute_1_encoder', OneHotEncoder(),['attribute_1']),('product_code_encoder', OneHotEncoder(),['product_code'])])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="ec9bebf9-8c02-4785-974c-0e727c4449c0" type="checkbox" ><label for="ec9bebf9-8c02-4785-974c-0e727c4449c0" class="sk-toggleable__label sk-toggleable__label-arrow">loading_missing_value_imputer</label><div class="sk-toggleable__content"><pre>['loading']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="572cc9df-a4bb-49b4-b730-d012d99ba876" type="checkbox" ><label for="572cc9df-a4bb-49b4-b730-d012d99ba876" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="c6058039-3e65-4724-ad03-96517a382ad6" type="checkbox" ><label for="c6058039-3e65-4724-ad03-96517a382ad6" class="sk-toggleable__label sk-toggleable__label-arrow">numerical_missing_value_imputer</label><div class="sk-toggleable__content"><pre>['loading', 'measurement_3', 'measurement_4', 'measurement_5', 'measurement_6', 'measurement_7', 'measurement_8', 'measurement_9', 'measurement_10', 'measurement_11', 'measurement_12', 'measurement_13', 'measurement_14', 'measurement_15', 'measurement_16', 'measurement_17']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="d385b0fd-dfaf-490c-8fda-dc024393a022" type="checkbox" ><label for="d385b0fd-dfaf-490c-8fda-dc024393a022" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="54db5302-69ab-49a1-b939-cb94c0958ab3" type="checkbox" ><label for="54db5302-69ab-49a1-b939-cb94c0958ab3" class="sk-toggleable__label sk-toggleable__label-arrow">attribute_0_encoder</label><div class="sk-toggleable__content"><pre>['attribute_0']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="c0a718c8-7093-4d45-85ae-847bfac3ec7e" type="checkbox" ><label for="c0a718c8-7093-4d45-85ae-847bfac3ec7e" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="993a1233-2b0d-473e-9bb3-f7c9d0bc654a" type="checkbox" ><label for="993a1233-2b0d-473e-9bb3-f7c9d0bc654a" class="sk-toggleable__label sk-toggleable__label-arrow">attribute_1_encoder</label><div class="sk-toggleable__content"><pre>['attribute_1']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="4311756e-5a71-45ce-9005-a1e5448b1c30" type="checkbox" ><label for="4311756e-5a71-45ce-9005-a1e5448b1c30" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="9bfb54df-7509-4669-b6e7-db3520c2d1c4" type="checkbox" ><label for="9bfb54df-7509-4669-b6e7-db3520c2d1c4" class="sk-toggleable__label sk-toggleable__label-arrow">product_code_encoder</label><div class="sk-toggleable__content"><pre>['product_code']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="1acc88d7-a436-40f6-99a3-ebfbbc9f897a" type="checkbox" ><label for="1acc88d7-a436-40f6-99a3-ebfbbc9f897a" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="5626883d-68bc-41b4-8913-23b6aed62eb8" type="checkbox" ><label for="5626883d-68bc-41b4-8913-23b6aed62eb8" class="sk-toggleable__label sk-toggleable__label-arrow">DecisionTreeClassifier</label><div class="sk-toggleable__content"><pre>DecisionTreeClassifier(max_depth=4)</pre></div></div></div></div></div></div></div>
## Evaluation Results
You can find the details about evaluation process and the evaluation results.
| Metric | Value |
|----------|---------|
# How to Get Started with the Model
Use the code below to get started with the model.
```python
[More Information Needed]
```
# Model Card Authors
This model card is written by following authors:
[More Information Needed]
# Model Card Contact
You can contact the model card authors through following channels:
[More Information Needed]
# Citation
Below you can find information related to citation.
**BibTeX:**
```
# h1
tjos osmda
```
# Model 2 Description (Logistic)
---
license: mit
---
# Model description
[More Information Needed]
## Intended uses & limitations
[More Information Needed]
## Training Procedure
### Hyperparameters
The model is trained with below hyperparameters.
<details>
<summary> Click to expand </summary>
| Hyperparameter | Value |
|-------------------|-----------|
| C | 1.0 |
| class_weight | |
| dual | False |
| fit_intercept | True |
| intercept_scaling | 1 |
| l1_ratio | |
| max_iter | 100 |
| multi_class | auto |
| n_jobs | |
| penalty | l2 |
| random_state | 0 |
| solver | liblinear |
| tol | 0.0001 |
| verbose | 0 |
| warm_start | False |
</details>
### Model Plot
The model plot is below.
<style>#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 {color: black;background-color: white;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 pre{padding: 0;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-toggleable {background-color: white;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-estimator:hover {background-color: #d4ebff;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-item {z-index: 1;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-parallel-item:only-child::after {width: 0;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-text-repr-fallback {display: none;}</style><div id="sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>LogisticRegression(random_state=0, solver='liblinear')</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="51d3cd4d-ea90-43e3-8d6a-5abc1df508b6" type="checkbox" checked><label for="51d3cd4d-ea90-43e3-8d6a-5abc1df508b6" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression(random_state=0, solver='liblinear')</pre></div></div></div></div></div>
## Evaluation Results
You can find the details about evaluation process and the evaluation results.
| Metric | Value |
|----------|---------|
| accuracy | 0.96 |
| f1 score | 0.96 |
# How to Get Started with the Model
Use the code below to get started with the model.
```python
[More Information Needed]
```
# Model Card Authors
This model card is written by following authors:
[More Information Needed]
# Model Card Contact
You can contact the model card authors through following channels:
[More Information Needed]
# Citation
Below you can find information related to citation.
**BibTeX:**
```
[More Information Needed]
```
# Additional Content
## confusion_matrix
 |