#blocked = #triton_gpu.blocked<{sizePerThread = [1, 1], threadsPerWarp = [1, 32], warpsPerCTA = [1, 8], order = [0, 1], CTAsPerCGA = [1, 1], CTASplitNum = [1, 1], CTAOrder = [1, 0]}> #blocked1 = #triton_gpu.blocked<{sizePerThread = [1, 4], threadsPerWarp = [1, 32], warpsPerCTA = [1, 8], order = [1, 0], CTAsPerCGA = [1, 1], CTASplitNum = [1, 1], CTAOrder = [1, 0]}> #blocked2 = #triton_gpu.blocked<{sizePerThread = [1, 1], threadsPerWarp = [1, 32], warpsPerCTA = [1, 8], order = [1, 0], CTAsPerCGA = [1, 1], CTASplitNum = [1, 1], CTAOrder = [1, 0]}> module attributes {"triton_gpu.compute-capability" = 89 : i32, "triton_gpu.num-ctas" = 1 : i32, "triton_gpu.num-warps" = 8 : i32, "triton_gpu.threads-per-warp" = 32 : i32} { tt.func public @triton__0d1d2d3d4d5d6e7de(%arg0: !tt.ptr {tt.divisibility = 16 : i32}, %arg1: !tt.ptr {tt.divisibility = 16 : i32}, %arg2: !tt.ptr {tt.divisibility = 16 : i32}, %arg3: !tt.ptr {tt.divisibility = 16 : i32}, %arg4: !tt.ptr {tt.divisibility = 16 : i32}, %arg5: !tt.ptr {tt.divisibility = 16 : i32}, %arg6: i64 {tt.max_divisibility = 8 : i32}, %arg7: i64 {tt.divisibility = 16 : i32, tt.max_divisibility = 16 : i32}) attributes {noinline = false} { %cst = arith.constant dense<7680> : tensor<1x2048xi64, #blocked> %cst_0 = arith.constant dense<7680> : tensor<1x2048xi64, #blocked1> %cst_1 = arith.constant dense<50257> : tensor<1x2048xi64, #blocked1> %c385973760_i64 = arith.constant 385973760 : i64 %c7680_i64 = arith.constant 7680 : i64 %c8_i64 = arith.constant 8 : i64 %cst_2 = arith.constant dense<-1> : tensor<1x2048xi64, #blocked1> %cst_3 = arith.constant dense<0.000000e+00> : tensor<1x2048xf32, #blocked> %cst_4 = arith.constant dense<0> : tensor<1x2048xi64, #blocked1> %cst_5 = arith.constant dense<0.000000e+00> : tensor<1x2048xf32, #blocked1> %cst_6 = arith.constant dense<0.000000e+00> : tensor<1x2048xbf16, #blocked> %c0_i32 = arith.constant 0 : i32 %c7680_i32 = arith.constant 7680 : i32 %c2048_i32 = arith.constant 2048 : i32 %0 = tt.get_program_id x : i32 %1 = arith.extsi %0 : i32 to i64 %2 = arith.cmpi slt, %1, %c8_i64 : i64 %3 = tt.make_range {end = 2048 : i32, start = 0 : i32} : tensor<2048xi32, #triton_gpu.slice<{dim = 0, parent = #blocked}>> %4 = tt.make_range {end = 2048 : i32, start = 0 : i32} : tensor<2048xi32, #triton_gpu.slice<{dim = 0, parent = #blocked1}>> %5 = tt.expand_dims %3 {axis = 0 : i32} : (tensor<2048xi32, #triton_gpu.slice<{dim = 0, parent = #blocked}>>) -> tensor<1x2048xi32, #blocked> %6 = tt.expand_dims %4 {axis = 0 : i32} : (tensor<2048xi32, #triton_gpu.slice<{dim = 0, parent = #blocked1}>>) -> tensor<1x2048xi32, #blocked1> %7 = arith.extsi %5 : tensor<1x2048xi32, #blocked> to tensor<1x2048xi64, #blocked> %8 = arith.extsi %6 : tensor<1x2048xi32, #blocked1> to tensor<1x2048xi64, #blocked1> %9 = arith.muli %1, %c7680_i64 : i64 %10 = tt.splat %9 : (i64) -> tensor<1x2048xi64, #blocked1> %11 = tt.splat %arg0 : (!tt.ptr) -> tensor<1x2048x!tt.ptr, #blocked1> %12 = tt.splat %2 : (i1) -> tensor<1x2048xi1, #blocked> %13 = tt.splat %2 : (i1) -> tensor<1x2048xi1, #blocked1> %14 = tt.splat %arg2 : (!tt.ptr) -> tensor<1x2048x!tt.ptr, #blocked1> %15 = tt.splat %arg3 : (!tt.ptr) -> tensor<1x2048x!tt.ptr, #blocked1> %16 = arith.muli %1, %c385973760_i64 : i64 %17 = tt.splat %16 : (i64) -> tensor<1x2048xi64, #blocked1> %18 = tt.splat %arg1 : (!tt.ptr) -> tensor<1x2048x!tt.ptr, #blocked1> %19:2 = scf.for %arg8 = %c0_i32 to %c7680_i32 step %c2048_i32 iter_args(%arg9 = %cst_4, %arg10 = %cst_3) -> (tensor<1x2048xi64, #blocked1>, tensor<1x2048xf32, #blocked>) : i32 { %30 = arith.extsi %arg8 : i32 to i64 %31 = tt.splat %30 : (i64) -> tensor<1x2048xi64, #blocked> %32 = tt.splat %30 : (i64) -> tensor<1x2048xi64, #blocked1> %33 = arith.addi %31, %7 : tensor<1x2048xi64, #blocked> %34 = arith.addi %32, %8 : tensor<1x2048xi64, #blocked1> %35 = arith.cmpi slt, %33, %cst : tensor<1x2048xi64, #blocked> %36 = arith.cmpi slt, %34, %cst_0 : tensor<1x2048xi64, #blocked1> %37 = arith.addi %34, %10 : tensor<1x2048xi64, #blocked1> %38 = tt.addptr %11, %37 : tensor<1x2048x!tt.ptr, #blocked1>, tensor<1x2048xi64, #blocked1> %39 = arith.andi %35, %12 : tensor<1x2048xi1, #blocked> %40 = arith.andi %36, %13 : tensor<1x2048xi1, #blocked1> %41 = tt.load %38, %40, %cst_4 {cache = 1 : i32, evict = 2 : i32, isVolatile = false} : tensor<1x2048xi64, #blocked1> %42 = tt.addptr %14, %37 : tensor<1x2048x!tt.ptr, #blocked1>, tensor<1x2048xi64, #blocked1> %43 = tt.load %42, %40, %cst_5 {cache = 1 : i32, evict = 2 : i32, isVolatile = false} : tensor<1x2048xf32, #blocked1> %44 = triton_gpu.convert_layout %43 : (tensor<1x2048xf32, #blocked1>) -> tensor<1x2048xf32, #blocked> %45 = tt.addptr %15, %37 : tensor<1x2048x!tt.ptr, #blocked1>, tensor<1x2048xi64, #blocked1> %46 = tt.load %45, %40, %cst_5 {cache = 1 : i32, evict = 2 : i32, isVolatile = false} : tensor<1x2048xf32, #blocked1> %47 = arith.cmpi ne, %41, %cst_2 : tensor<1x2048xi64, #blocked1> %48 = triton_gpu.convert_layout %47 : (tensor<1x2048xi1, #blocked1>) -> tensor<1x2048xi1, #blocked> %49 = arith.extui %47 : tensor<1x2048xi1, #blocked1> to tensor<1x2048xi64, #blocked1> %50 = arith.addi %arg9, %49 : tensor<1x2048xi64, #blocked1> %51 = arith.select %40, %50, %arg9 : tensor<1x2048xi1, #blocked1>, tensor<1x2048xi64, #blocked1> %52 = arith.select %47, %41, %cst_4 : tensor<1x2048xi1, #blocked1>, tensor<1x2048xi64, #blocked1> %53 = arith.addi %52, %cst_1 : tensor<1x2048xi64, #blocked1> %54 = arith.cmpi slt, %52, %cst_4 : tensor<1x2048xi64, #blocked1> %55 = arith.select %54, %53, %52 : tensor<1x2048xi1, #blocked1>, tensor<1x2048xi64, #blocked1> %56 = arith.cmpi sge, %55, %cst_4 : tensor<1x2048xi64, #blocked1> %57 = arith.cmpi slt, %55, %cst_1 : tensor<1x2048xi64, #blocked1> %58 = arith.andi %56, %57 : tensor<1x2048xi1, #blocked1> %59 = triton_gpu.convert_layout %58 : (tensor<1x2048xi1, #blocked1>) -> tensor<1x2048xi1, #blocked2> tt.assert %59, "index out of bounds: 0 <= tmp11 < 50257", "", "_call_with_frames_removed", 883 : tensor<1x2048xi1, #blocked2> %60 = arith.muli %34, %cst_1 : tensor<1x2048xi64, #blocked1> %61 = arith.addi %55, %60 : tensor<1x2048xi64, #blocked1> %62 = arith.addi %61, %17 : tensor<1x2048xi64, #blocked1> %63 = tt.addptr %18, %62 : tensor<1x2048x!tt.ptr, #blocked1>, tensor<1x2048xi64, #blocked1> %64 = triton_gpu.convert_layout %63 : (tensor<1x2048x!tt.ptr, #blocked1>) -> tensor<1x2048x!tt.ptr, #blocked> %65 = tt.load %64, %39, %cst_6 {cache = 1 : i32, evict = 3 : i32, isVolatile = false} : tensor<1x2048xbf16, #blocked> %66 = arith.extf %65 : tensor<1x2048xbf16, #blocked> to tensor<1x2048xf32, #blocked> %67 = arith.subf %66, %44 : tensor<1x2048xf32, #blocked> %68 = math.log %46 : tensor<1x2048xf32, #blocked1> %69 = triton_gpu.convert_layout %68 : (tensor<1x2048xf32, #blocked1>) -> tensor<1x2048xf32, #blocked> %70 = arith.subf %67, %69 : tensor<1x2048xf32, #blocked> %71 = arith.subf %cst_3, %70 : tensor<1x2048xf32, #blocked> %72 = arith.select %48, %71, %cst_3 : tensor<1x2048xi1, #blocked>, tensor<1x2048xf32, #blocked> %73 = arith.addf %arg10, %72 : tensor<1x2048xf32, #blocked> %74 = arith.select %39, %73, %arg10 : tensor<1x2048xi1, #blocked>, tensor<1x2048xf32, #blocked> scf.yield %51, %74 : tensor<1x2048xi64, #blocked1>, tensor<1x2048xf32, #blocked> } %20 = "tt.reduce"(%19#0) <{axis = 1 : i32}> ({ ^bb0(%arg8: i64, %arg9: i64): %30 = arith.addi %arg8, %arg9 : i64 tt.reduce.return %30 : i64 }) : (tensor<1x2048xi64, #blocked1>) -> tensor<1xi64, #triton_gpu.slice<{dim = 1, parent = #blocked1}>> %21 = triton_gpu.convert_layout %20 : (tensor<1xi64, #triton_gpu.slice<{dim = 1, parent = #blocked1}>>) -> tensor<1xi64, #triton_gpu.slice<{dim = 1, parent = #blocked}>> %22 = tt.expand_dims %21 {axis = 1 : i32} : (tensor<1xi64, #triton_gpu.slice<{dim = 1, parent = #blocked}>>) -> tensor<1x1xi64, #blocked> %23 = tt.addptr %arg4, %1 : !tt.ptr, i64 %24 = tt.splat %23 : (!tt.ptr) -> tensor<1x1x!tt.ptr, #blocked> %25 = tt.splat %2 : (i1) -> tensor<1x1xi1, #blocked> tt.store %24, %22, %25 {cache = 1 : i32, evict = 1 : i32} : tensor<1x1xi64, #blocked> %26 = "tt.reduce"(%19#1) <{axis = 1 : i32}> ({ ^bb0(%arg8: f32, %arg9: f32): %30 = arith.addf %arg8, %arg9 : f32 tt.reduce.return %30 : f32 }) : (tensor<1x2048xf32, #blocked>) -> tensor<1xf32, #triton_gpu.slice<{dim = 1, parent = #blocked}>> %27 = tt.expand_dims %26 {axis = 1 : i32} : (tensor<1xf32, #triton_gpu.slice<{dim = 1, parent = #blocked}>>) -> tensor<1x1xf32, #blocked> %28 = tt.addptr %arg5, %1 : !tt.ptr, i64 %29 = tt.splat %28 : (!tt.ptr) -> tensor<1x1x!tt.ptr, #blocked> tt.store %29, %27, %25 {cache = 1 : i32, evict = 1 : i32} : tensor<1x1xf32, #blocked> tt.return } }