#blocked = #triton_gpu.blocked<{sizePerThread = [2], threadsPerWarp = [32], warpsPerCTA = [8], order = [0], CTAsPerCGA = [1], CTASplitNum = [1], CTAOrder = [0]}> module attributes {"triton_gpu.compute-capability" = 89 : i32, "triton_gpu.num-ctas" = 1 : i32, "triton_gpu.num-warps" = 8 : i32, "triton_gpu.threads-per-warp" = 32 : i32} { tt.func public @triton__0d1d2de(%arg0: !tt.ptr {tt.divisibility = 16 : i32}, %arg1: !tt.ptr {tt.divisibility = 16 : i32}, %arg2: i32 {tt.divisibility = 16 : i32, tt.max_divisibility = 16 : i32}) attributes {noinline = false} { %c512_i32 = arith.constant 512 : i32 %0 = tt.get_program_id x : i32 %1 = arith.muli %0, %c512_i32 : i32 %2 = tt.make_range {end = 512 : i32, start = 0 : i32} : tensor<512xi32, #blocked> %3 = tt.splat %1 : (i32) -> tensor<512xi32, #blocked> %4 = arith.addi %3, %2 : tensor<512xi32, #blocked> %5 = tt.splat %arg0 : (!tt.ptr) -> tensor<512x!tt.ptr, #blocked> %6 = tt.addptr %5, %4 : tensor<512x!tt.ptr, #blocked>, tensor<512xi32, #blocked> %7 = tt.load %6 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<512xf32, #blocked> %8 = tt.splat %arg1 : (!tt.ptr) -> tensor<512x!tt.ptr, #blocked> %9 = tt.addptr %8, %4 : tensor<512x!tt.ptr, #blocked>, tensor<512xi32, #blocked> %10 = arith.truncf %7 : tensor<512xf32, #blocked> to tensor<512xbf16, #blocked> tt.store %9, %10 {cache = 1 : i32, evict = 1 : i32} : tensor<512xbf16, #blocked> tt.return } }