module { tt.func public @triton__0d1d2d3d4d5d6d7d8de9de(%arg0: !tt.ptr {tt.divisibility = 16 : i32}, %arg1: !tt.ptr {tt.divisibility = 16 : i32}, %arg2: !tt.ptr {tt.divisibility = 16 : i32}, %arg3: !tt.ptr {tt.divisibility = 16 : i32}, %arg4: !tt.ptr {tt.divisibility = 16 : i32}, %arg5: !tt.ptr {tt.divisibility = 16 : i32}, %arg6: !tt.ptr {tt.divisibility = 16 : i32}, %arg7: !tt.ptr {tt.divisibility = 16 : i32}, %arg8: i32 {tt.divisibility = 16 : i32, tt.max_divisibility = 16 : i32}, %arg9: i32 {tt.divisibility = 16 : i32, tt.max_divisibility = 16 : i32}) attributes {noinline = false} { %c512_i32 = arith.constant 512 : i32 %c256_i32 = arith.constant 256 : i32 %cst = arith.constant 0.000000e+00 : f32 %cst_0 = arith.constant 2.560000e+02 : f32 %cst_1 = arith.constant 9.99999974E-6 : f32 %cst_2 = arith.constant dense<0.000000e+00> : tensor<256xf32> %cst_3 = arith.constant dense<256> : tensor<1xi64> %cst_4 = arith.constant dense<50257> : tensor<1xi64> %cst_5 = arith.constant dense<0> : tensor<1xi64> %cst_6 = arith.constant dense<256> : tensor<256xi32> %0 = tt.get_program_id x : i32 %1 = tt.make_range {end = 256 : i32, start = 0 : i32} : tensor<256xi32> %2 = arith.cmpi slt, %1, %cst_6 : tensor<256xi32> %3 = arith.remsi %0, %c512_i32 : i32 %4 = tt.addptr %arg1, %0 : !tt.ptr, i32 %5 = tt.splat %4 : (!tt.ptr) -> tensor<1x!tt.ptr> %6 = tt.load %5 {cache = 1 : i32, evict = 3 : i32, isVolatile = false} : tensor<1xi64> %7 = arith.muli %3, %c256_i32 : i32 %8 = tt.splat %7 : (i32) -> tensor<256xi32> %9 = arith.addi %1, %8 : tensor<256xi32> %10 = tt.splat %arg3 : (!tt.ptr) -> tensor<256x!tt.ptr> %11 = tt.addptr %10, %9 : tensor<256x!tt.ptr>, tensor<256xi32> %12 = tt.load %11, %2, %cst_2 {cache = 1 : i32, evict = 3 : i32, isVolatile = false} : tensor<256xf32> %13 = tt.splat %arg4 : (!tt.ptr) -> tensor<256x!tt.ptr> %14 = tt.addptr %13, %1 : tensor<256x!tt.ptr>, tensor<256xi32> %15 = tt.load %14, %2, %cst_2 {cache = 1 : i32, evict = 3 : i32, isVolatile = false} : tensor<256xf32> %16 = arith.addi %6, %cst_4 : tensor<1xi64> %17 = arith.cmpi slt, %6, %cst_5 : tensor<1xi64> %18 = arith.select %17, %16, %6 : tensor<1xi1>, tensor<1xi64> %19 = arith.cmpi sge, %18, %cst_5 : tensor<1xi64> %20 = arith.cmpi slt, %18, %cst_4 : tensor<1xi64> %21 = arith.andi %19, %20 : tensor<1xi1> tt.assert %21, "index out of bounds: 0 <= tmp3 < 50257", "", "_call_with_frames_removed", 883 : tensor<1xi1> %22 = arith.muli %18, %cst_3 : tensor<1xi64> %23 = tt.broadcast %22 : (tensor<1xi64>) -> tensor<256xi64> %24 = arith.extsi %1 : tensor<256xi32> to tensor<256xi64> %25 = arith.addi %24, %23 : tensor<256xi64> %26 = tt.splat %arg2 : (!tt.ptr) -> tensor<256x!tt.ptr> %27 = tt.addptr %26, %25 : tensor<256x!tt.ptr>, tensor<256xi64> %28 = tt.load %27, %2, %cst_2 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<256xf32> %29 = arith.addf %28, %12 : tensor<256xf32> %30 = arith.select %2, %29, %cst_2 : tensor<256xi1>, tensor<256xf32> %31 = "tt.reduce"(%30) <{axis = 0 : i32}> ({ ^bb0(%arg10: f32, %arg11: f32): %60 = arith.addf %arg10, %arg11 : f32 tt.reduce.return %60 : f32 }) : (tensor<256xf32>) -> f32 %32 = arith.addf %31, %cst : f32 %33 = arith.divf %32, %cst_0 : f32 %34 = tt.splat %33 : (f32) -> tensor<1xf32> %35 = tt.splat %33 : (f32) -> tensor<256xf32> %36 = arith.subf %29, %35 : tensor<256xf32> %37 = arith.mulf %36, %36 : tensor<256xf32> %38 = arith.select %2, %37, %cst_2 : tensor<256xi1>, tensor<256xf32> %39 = "tt.reduce"(%38) <{axis = 0 : i32}> ({ ^bb0(%arg10: f32, %arg11: f32): %60 = arith.addf %arg10, %arg11 : f32 tt.reduce.return %60 : f32 }) : (tensor<256xf32>) -> f32 %40 = arith.addf %39, %cst : f32 %41 = arith.divf %40, %cst_0 : f32 %42 = arith.addf %41, %cst_1 : f32 %43 = tt.extern_elementwise %42 {libname = "libdevice", libpath = "/usr/local/lib/python3.10/dist-packages/triton/language/../third_party/cuda/lib/libdevice.10.bc", pure = true, symbol = "__nv_rsqrtf"} : (f32) -> f32 %44 = tt.splat %43 : (f32) -> tensor<1xf32> %45 = tt.splat %43 : (f32) -> tensor<256xf32> %46 = arith.mulf %36, %45 : tensor<256xf32> %47 = arith.mulf %46, %15 : tensor<256xf32> %48 = arith.muli %0, %c256_i32 : i32 %49 = tt.splat %48 : (i32) -> tensor<256xi32> %50 = arith.addi %1, %49 : tensor<256xi32> %51 = tt.splat %arg5 : (!tt.ptr) -> tensor<256x!tt.ptr> %52 = tt.addptr %51, %50 : tensor<256x!tt.ptr>, tensor<256xi32> tt.store %52, %29, %2 {cache = 1 : i32, evict = 1 : i32} : tensor<256xf32> gpu.barrier %53 = tt.addptr %arg0, %0 : !tt.ptr, i32 %54 = tt.splat %53 : (!tt.ptr) -> tensor<1x!tt.ptr> tt.store %54, %44 {cache = 1 : i32, evict = 1 : i32} : tensor<1xf32> %55 = tt.splat %arg7 : (!tt.ptr) -> tensor<256x!tt.ptr> %56 = tt.addptr %55, %50 : tensor<256x!tt.ptr>, tensor<256xi32> %57 = arith.truncf %47 : tensor<256xf32> to tensor<256xbf16> tt.store %56, %57, %2 {cache = 1 : i32, evict = 1 : i32} : tensor<256xbf16> %58 = tt.addptr %arg6, %0 : !tt.ptr, i32 %59 = tt.splat %58 : (!tt.ptr) -> tensor<1x!tt.ptr> tt.store %59, %34 {cache = 1 : i32, evict = 1 : i32} : tensor<1xf32> tt.return } }