define([ "require", "./sympy_functions", "./sympy_assumptions", ], function (requirejs, sympy_functions, sympy_assumptions) { return { 'name' : 'SymPy', 'sub-menu' : [ { 'name' : 'Setup', 'snippet' : [ 'from __future__ import print_function, division', 'from sympy import *', 'a, s, t, u, v, w, x, y, z = symbols("a, s, t, u, v, w, x, y, z")', 'k, m, n = symbols("k, m, n", integer=True)', 'f, g, h = symbols("f, g, h", cls=Function)', 'init_printing()', ], }, { 'name' : 'Documentation', 'external-link' : 'http://docs.sympy.org/latest/index.html', }, '---', { 'name' : 'Constants', 'sub-menu' : [ { 'name' : '1', 'snippet' : ['S(1)',], //'S.One',], }, // { // 'name' : '0', // 'snippet' : ['S.Zero',], // }, // { // 'name' : '-1', // 'snippet' : ['S.NegativeOne',], // }, { 'name' : '1/2', 'snippet' : ['S(1)/2',], //'S.Half',], }, { 'name' : 'Rational numbers', 'snippet' : ['Rational(3, 7)',], }, '---', { 'name' : 'Base of natural logarithm, \\(e\\)', 'snippet' : ['E',], }, { 'name' : 'Unit imaginary number, \\(i\\)', 'snippet' : ['I',], }, { 'name' : 'Geometric constant, \\(\\pi\\)', 'snippet' : ['pi',], }, { 'name' : 'Golden ratio, \\(\\phi\\)', 'snippet' : ['GoldenRatio',], }, { 'name' : 'Euler-Mascheroni constant, \\(\\gamma\\)', 'snippet' : ['EulerGamma',], }, { 'name' : 'Catalan\'s constant, \\(K\\)', 'snippet' : ['Catalan',], }, '---', { 'name' : 'Infinity, \\(\\infty\\)', 'snippet' : ['oo',], // 'S.Infinity' }, // { // 'name' : 'Negative infinity, \\(-\\infty\\)', // 'snippet' : ['S.NegativeInfinity',], // }, { 'name' : 'Complex infinity, \\(\\tilde{\\infty}\\)', 'snippet' : ['zoo'], //'S.ComplexInfinity',], }, { 'name' : 'NaN', 'snippet' : ['nan',], // 'S.NaN' }, ], }, sympy_functions, { 'name' : 'Calculus', 'sub-menu' : [ { 'name' : 'Differentiate once', 'snippet' : [ 'expr = exp(x**2)', 'deriv = diff(expr, x)', ], }, { 'name' : 'Differentiate multiple times', 'snippet' : [ 'expr = x**4', 'deriv = diff(expr, x, 3)', ], }, { 'name' : 'Mixed partial derivatives', 'snippet' : [ 'expr = exp(x*y*z)', 'deriv = diff(expr, x, y, 2, z, 4)', ], }, { 'name' : 'Finite differences', 'snippet' : [ 'dx0, dx1 = symbols("dx0, dx1")', 'formula = as_finite_diff(f(x).diff(x), [x-dx0, x, x+dx1])', ], }, '---', { 'name' : 'Indefinite integral', 'snippet' : [ 'integral = integrate(cos(x), x)', ], }, { 'name' : 'Definite integral', 'snippet' : [ 'integral = integrate(exp(-x), (x, 0, oo))', ], }, { 'name' : 'Double integral', 'snippet' : [ 'integral = integrate(exp(-x**2-y**2), (x, -oo, oo), (y, -oo, oo))', ], }, '---', { 'name' : 'Limits', 'snippet' : [ 'lim = limit(sin(x)/x, x, 0, "+")', ], }, { 'name' : 'Series expansion', 'snippet' : [ 'expr = exp(sin(x))', 'ser = series(expr, x, 0, 6)', ], }, { 'name' : 'Series expansion, removing order term', 'snippet' : [ 'expr = exp(sin(x))', 'ser = series(expr, x, 0, 6).removeO()', ], }, { 'name' : 'Summations', 'snippet' : [ 'ell_min,ell,ell_max = symbols("ell_min,ell,ell_max", integer=True)', 'summ = summation((2*ell + 1), (ell, ell_min, ell_max))', ], }, ], }, { 'name' : 'Solvers', 'sub-menu' : [ { 'name' : 'Solve for one variable', 'snippet' : [ 'expr = x**4 - 4*x**3 + 2*x**2 - x', 'eqn = Eq(expr, 0)', 'soln = solve(eqn, x)', ], }, { 'name' : 'Solve for two variables', 'snippet' : [ 'eqns = Eq(x + y, 4), Eq(x*y, 3)', 'soln = solve(eqns, [x,y])', ], }, { 'name' : 'Solve differential equation', 'snippet' : [ 'expr = f(x).diff(x, x) + 9*f(x)', "eqn = Eq(expr, 1) # f''(x) + 9f(x) = 1", 'soln = dsolve(eqn, f(x))', ], }, ], }, { 'name' : 'Manipulating expressions', 'sub-menu' : [ { 'name' : 'Simplify', 'snippet' : [ 'expr = (x**3 + x**2 - x - 1)/(x**2 + 2*x + 1)', 'expr = simplify(expr)', ], }, { 'name' : 'Refine, using assumptions', // 'snippet' : [ // 'expr = exp(pi*I*2*x)', // 'assumption = Q.integer(x) & Q.integer(y)', // 'expr = refine(expr, assumption)', // ], 'sub-menu' : [ { 'name' : 'Refine', 'snippet' : [ 'expr = exp(pi*I*2*(x+y))', 'assumption = Q.integer(x) & Q.integer(y)', 'expr = refine(expr, assumption)', ], }, { 'name' : 'Refine in context manager', 'snippet' : [ 'expr = exp(pi*I*2*(x+y))', 'with assuming(Q.integer(x) & Q.integer(y)):', ' expr = refine(expr)', ], }, sympy_assumptions, ], }, { 'name' : 'Expansion', 'sub-menu' : [ { 'name' : 'Expand basic expressions', 'snippet' : [ 'expr = (x + 2)*(x - 3)', 'expr = expand(expr)', ], }, '---', { 'name' : 'Expand, including complex parts', 'snippet' : [ 'expr = cos(x)', 'expr = expand(expr, complex=True)', ], }, { 'name' : 'Expand, including functions', 'snippet' : [ 'expr = gamma(x+3)', 'expr = expand(expr, func=True)', ], }, { 'name' : 'Expand, including trig', 'snippet' : [ 'expr = sin(x+y)*(x+y)', 'expr = expand(expr, trig=True)', ], }, '---', { 'name' : 'Expand only real and imaginary parts', 'snippet' : [ 'expand_complex(x)', ], }, { 'name' : 'Expand only functions', 'snippet' : [ 'expr = gamma(x + 2)', 'expr = expand_func(expr)', ], }, { 'name' : 'Expand only hypergeometric functions', 'snippet' : [ 'expr = hyper([1,1], [1,], z) + gamma(z)', 'expr = hyperexpand(expr)', ], }, { 'name' : 'Expand only logarithms', 'snippet' : [ 'a, b = symbols("a, b", positive=True)', 'expr = log(a**2*b)', 'expr = expand_log(expr)', ], }, { 'name' : 'Expand only multiplication over addition', 'snippet' : [ 'expr = y*(x + z)', 'expr = expand_mul(expr)', ], }, { 'name' : 'Expand only multinomials', 'snippet' : [ 'expr = (x + y + z)**3', 'expr = expand_multinomial(expr)', ], }, { 'name' : 'Expand only powers of multiplied bases', 'snippet' : [ 'a, b = symbols("a, b", positive=True)', 'expr = (a*b)**z', 'expr = expand_power_base(expr)', ], }, { 'name' : 'Expand only addition in exponents', 'snippet' : [ 'expr = x**(y + 2)', 'expr = expand_power_exp(expr)', ], }, { 'name' : 'Expand only trig', 'snippet' : [ 'expr = sin(x+y)*(x+y)', 'expr = expand_trig(expr)', ], }, ], }, { 'name' : 'Collect terms', 'sub-menu' : [ { 'name' : 'Collect as coefficients of one factor', 'snippet' : [ 'expr = y*x**2 + z*x**2 + t*x - 2*x + 3', 'expr = collect(expr, x)', ], }, { 'name' : 'Collect as coefficients of multiple factors', 'snippet' : [ 'expr = x**2 + y*x**2 + x*y + y + z*y', 'expr = collect(expr, [x, y])', ], }, { 'name' : 'Collect with respect to wild card', 'snippet' : [ 'w = Wild("w")', 'expr = z*x**y - t*z**y', 'expr = collect(expr, w**y)', ], }, { 'name' : 'Collect and apply function to each coefficient', 'snippet' : [ 'expr = expand((x + y + 1)**3)', 'expr = collect(expr, x, factor)', ], }, { 'name' : 'Recursively collect', 'snippet' : [ 'expr = (x**2*y + x*y + x + y)/(x*y + z*y)', 'expr = rcollect(expr, y)', ], }, { 'name' : 'Collect constants', 'snippet' : [ 'expr = sqrt(3)*x + sqrt(7)*x + sqrt(3) + sqrt(7)', 'expr = collect_const(expr)', ], }, ], }, { 'name' : 'Substitutions and replacements', 'sub-menu' : [ { 'name' : 'Substitute one subexpression for another', 'snippet' : [ 'expr = 1 + x*y', 'expr = expr.subs(x, pi)', ], }, { 'name' : 'Substitute multiple subexpressions successively', 'snippet' : [ 'expr = (x+y)/y', 'substitutions = [(x+y, y), (y, x+y)]', 'expr = expr.subs(substitutions)', ], }, { 'name' : 'Substitute multiple subexpressions simultaneously', 'snippet' : [ 'expr = (x+y)/y', 'substitutions = [(x+y, y), (y, x+y)]', 'expr = expr.subs(substitutions, simultaneous=True)', ], }, '---', { 'name' : 'Replace one object with another', 'snippet' : [ 'expr = 1 + x*y', 'expr = expr.replace(x, pi)', ], }, { 'name' : 'Replace one object with some function of its arguments', 'snippet' : [ 'expr = log(sin(x)) + tan(sin(x**2))', 'expr = expr.replace(sin, lambda arg: sin(2*arg))', ], }, { 'name' : 'Replace a pattern with an object', 'snippet' : [ '# Note: `exclude=` specifies that the Wild cannot match any item in the list', 'a, b = symbols("a, b", cls=Wild, exclude=[x,y])', 'expr = 2*x + y + z', 'wild = a*x + b', 'replacement = b - a', '# Note: `exact=True` demands that all Wilds have nonzero matches', 'expr = expr.replace(wild, replacement, exact=True)', ], }, { 'name' : 'Replace a pattern with some function of that object', 'snippet' : [ 'a = symbols("a", cls=Wild, exclude=[])', 'expr = log(sin(x)) + tan(sin(x**2))', 'expr.replace(sin(a), lambda a: sin(2*a))', ], }, { 'name' : 'Replace anything with some function of that thing', 'snippet' : [ 'g = 2*sin(x**3)', 'g.replace(lambda expr: expr.is_Function, lambda expr: expr**2)', ], }, '---', { 'name' : 'Replace exact subexpressions', 'snippet' : [ 'expr = x**2 + x**4', 'replacements = {x**2: y}', 'expr = expr.xreplace(replacements)', ], }, // { // 'name' : 'rewrite', // 'snippet' : [ // 'expr = tan(x)', // 'expr = expr.rewrite(sin)', // ], // }, ], }, { 'name' : 'Evaluation', 'sub-menu' : [ { 'name' : 'Evaluate numerically to arbitrary precision', 'snippet' : [ 'expr = x * sqrt(8)', 'precision = 50', 'val = N(expr, precision, subs={x:2.4})', ], }, { 'name' : 'Evaluate numerically to python float', 'snippet' : [ 'expr = x * sqrt(8)', 'val = float(expr.subs([(x, 2.4)]))', ], }, { 'name' : 'Create numpy function for efficient evaluation', 'snippet' : [ 'import numpy', 'a = numpy.arange(10)', 'expr = sin(x)', 'f = lambdify(x, expr, "numpy")', 'vals = f(a)', ], }, ], }, '---', { 'name' : 'Polynomials', 'sub-menu' : [ { 'name' : 'Factor polynomial over rationals', 'snippet' : [ 'expr = x**3 - x**2 + x - 1', 'expr = factor(expr)', ], }, { 'name' : 'Collect common powers of a term', 'snippet' : [ 'expr = x*y + x - 3 + 2*x**2 - z*x**2 + x**3', 'expr = collect(expr, x)', ], }, { 'name' : 'Extract coefficient of a term', 'snippet' : [ 'expr = 3+2*x+4*x**2', 'expr = expr.coeff(x**2)', ], }, ], }, { 'name' : 'Rational functions', 'sub-menu' : [ { 'name' : 'Cancel', 'snippet' : [ 'expr = (x**2 + 2*x + 1)/(x**2 + x)', 'expr = cancel(expr)', ], }, { 'name' : 'Decompose into partial fractions', 'snippet' : [ 'expr = (4*x**3 + 21*x**2 + 10*x + 12)/(x**4 + 5*x**3 + 5*x**2 + 4*x)', 'expr = apart(expr)', ], }, { 'name' : 'Join over common denominator', 'snippet' : [ 'expr = 1/x + 1/y', 'expr = ratsimp(expr)', ], }, { 'name' : 'Remove square roots from denominator', 'snippet' : [ 'expr = 1/(1+I)', 'expr = radsimp(expr)', ], }, ], }, { 'name' : 'Powers', 'sub-menu' : [ { 'name' : 'Important caveats', 'external-link' : 'http://docs.sympy.org/dev/tutorial/simplification.html#powers' }, '---', // { // 'name' : 'Setup for these snippets', // 'snippet' : [ // 'x, y = symbols("x, y", positive=True)', // 'a, b = symbols("a, b", real=True)', // 'z, t, c = symbols("z, t, c")', // ], // }, { 'name' : 'Simplify powers for general arguments', 'snippet' : [ 'powsimp(x**y * x**z)', ], }, { 'name' : 'Simplify powers, forcing assumptions', 'snippet' : [ 'powsimp(x**y * x**z, force=True)', ], }, { 'name' : 'Expand powers by exponent for general arguments', 'snippet' : [ 'expand_power_exp(x**(y + z))', ], }, { 'name' : 'Expand powers of multiplied bases, forcing assumptions', 'snippet' : [ 'expand_power_base((x*y)**z, force=True)', ], }, { 'name' : 'Collect exponents on powers for general arguments', 'snippet' : [ 'powdenest((x**y)**z)', ], }, { 'name' : 'Collect exponents on powers, forcing assumptions', 'snippet' : [ 'powdenest((x**y)**z, force=True)', ], }, { 'name' : 'Collect exponents on powers, forcing assumptions and polar simplifications', 'snippet' : [ 'powdenest((z**a)**b, force=True, polar=True)', ], }, { 'name' : 'Denest square-roots', 'snippet' : [ 'sqrtdenest(sqrt(5 + 2*sqrt(6)))', ], }, ], }, { 'name' : 'Exponentials and Logarithms', 'sub-menu' : [ { 'name' : 'Important caveats', 'external-link' : 'http://docs.sympy.org/dev/tutorial/simplification.html#exponentials-and-logarithms' }, '---', // { // 'name' : 'Setup for these snippets', // 'snippet' : [ // 'x, y = symbols("x, y", positive=True)', // 'n = symbols("n", real=True)', // ], // }, { 'name' : 'Combine exponentials', 'snippet' : [ 'powsimp(exp(y) * exp(z))', ], }, { 'name' : 'Expand logarithms for general arguments', 'snippet' : [ 'expand_log(log(x*y))', ], }, { 'name' : 'Expand logarithms, forcing assumptions', 'snippet' : [ 'expand_log(log(z**2), force=True)', ], }, { 'name' : 'Combine logarithms for general arguments', 'snippet' : [ 'logcombine(log(x) + z*log(y))', ], }, { 'name' : 'Combine logarithms, forcing assumptions', 'snippet' : [ 'logcombine(log(x) + z*log(y))', ], }, { 'name' : 'Simplification, possibly to trig functions', 'snippet' : [ 'exptrigsimp(exp(z) + exp(-z))', ], }, ], }, { 'name' : 'Trigonometric functions', 'sub-menu' : [ { 'name' : 'Expansion', 'snippet' : [ 'expr = sin(x + y)', 'expr = expand(expr, trig=True)', ], }, { 'name' : 'Simplification', 'snippet' : [ 'expr = sin(x)**4 - 2*cos(x)**2*sin(x)**2 + cos(x)**4', 'expr = trigsimp(expr)', ], }, { 'name' : 'Simplification, possibly to exponentials', 'snippet' : [ 'expr = cosh(z) - sinh(z)', 'expr = exptrigsimp(expr)', ], }, ], }, { 'name' : 'Miscellaneous', 'sub-menu' : [ { 'name' : 'Simplify factorials', 'snippet' : [ 'expr = factorial(n)/factorial(n - 3)', 'expr = combsimp(expr)', ], }, { 'name' : 'Simplify binomials', 'snippet' : [ 'expr = binomial(n+1, k+1)/binomial(n, k)', 'expr = combsimp(expr)', ], }, { 'name' : 'Simplify numerical expressions to exact values', 'snippet' : [ 'nsimplify(4.0/(1+sqrt(5.0)), constants=[GoldenRatio,])', ], }, { 'name' : 'Expand gamma functions', 'snippet' : [ 'expr = gamma(z+3)', 'expr = expand_func(expr)', ], }, { 'name' : 'Simplify Bessel functions', 'snippet' : [ 'expr = besselj(x, z*polar_lift(-1))', 'expr = besselsimp(expr)', ], }, ], }, ], }, ], }; });