define([ "require", "./scipy_constants", "./scipy_special", ], function (requirejs, scipy_constants, scipy_special) { return { 'name' : 'SciPy', 'sub-menu' : [ { 'name' : 'Setup', 'snippet' : [ 'from __future__ import print_function, division', 'import numpy as np', 'import scipy as sp', ], }, { 'name' : 'Documentation', 'external-link' : 'http://docs.scipy.org/doc/scipy/reference/', }, '---', // { // 'name' : 'Clustering algorithms', // 'sub-menu' : [ // { // 'name' : 'Setup', // 'snippet' : ['from scipy import cluster',], // }, // ], // }, scipy_constants, { 'name' : 'Fast Fourier Transform routines', 'sub-menu' : [ { 'name' : 'Setup', 'snippet' : ['from scipy import fftpack',], }, '---', { 'name' : 'Docs', 'external-link' : 'http://docs.scipy.org/doc/scipy-0.15.1/reference/fftpack.html' }, ], }, { 'name' : 'Integration and ODE solvers', 'sub-menu' : [ { 'name' : 'Setup', 'snippet' : ['from scipy import integrate',], }, '---', { 'name' : 'Integrate given function object', 'sub-menu' : [ { 'name' : 'General-purpose integration', 'snippet' : [ 'from scipy import integrate', 'def f(x, a, b):', ' return a * x + b', 'integral,error = integrate.quad(f, 0, 4.5, args=(2,1)) # integrates 2*x+1', 'print(integral, error)', ], }, { 'name' : 'General purpose double integration', 'snippet' : [ 'from scipy import integrate', 'def integrand(y, x):', ' return x * y**2', 'x_lower_lim, x_upper_lim = 0.0, 0.5', 'y_lower_lim, y_upper_lim = lambda x:0.0, lambda x:1.0-2.0*x', '# int_{x=0}^{0.5} int_{y=0}^{1-2x} x y dx dy', 'integral,error = integrate.dblquad(integrand,', ' x_lower_lim, x_upper_lim,', ' y_lower_lim, y_upper_lim)', 'print(integral, error)', ], }, { 'name' : 'General purpose triple integration', 'snippet' : [ 'from scipy import integrate', 'def integrand(z, y, x):', ' return x * y**2 + z', 'x_lower_lim, x_upper_lim = 0.0, 0.5', 'y_lower_lim, y_upper_lim = lambda x:0.0, lambda x:1.0-2.0*x', 'z_lower_lim, z_upper_lim = lambda x,y:-1.0, lambda x,y:1.0+2.0*x-y', '# int_{x=0}^{0.5} int_{y=0}^{1-2x} int_{z=-1}^{1+2x-y} (x y**2 + z) dz dy dx', 'integral,error = integrate.tplquad(integrand,', ' x_lower_lim, x_upper_lim,', ' y_lower_lim, y_upper_lim,', ' z_lower_lim, z_upper_lim)', 'print(integral, error)', ], }, { 'name' : 'General purpose n-fold integration', 'snippet' : [ 'from scipy import integrate', 'def integrand(x0, x1, x2):', ' return x2 * x1**2 + x0', 'x2_lim = (0.0, 0.5)', 'x1_lim = lambda x2:(0.0, 1.0-2.0*x2)', 'x0_lim = lambda x1,x2:(-1.0, 1.0+2.0*x2-x1)', '# int_{x2=0}^{0.5} int_{x1=0}^{1-2x2} int_{x0=-1}^{1+2x2-x1} (x2 x1**2 + x0) dx0 dx1 dx2', 'integral,error = integrate.nquad(integrand, [x0_lim, x1_lim, x2_lim])', 'print(integral, error)', ], }, { 'name' : 'Integrate func(x) using Gaussian quadrature of order $n$', 'snippet' : [ 'gaussian = lambda x: 1/np.sqrt(np.pi) * np.exp(-x**2)', 'a,b = 0,1 # limits of integration', 'result,err = integrate.fixed_quad(gaussian, a, b, n=5)', ], }, { 'name' : 'Integrate with given tolerance using Gaussian quadrature', 'snippet' : [ 'gaussian = lambda x: 1/np.sqrt(np.pi) * np.exp(-x**2)', 'a,b = 0,1 # limits of integration', 'result,err = integrate.quadrature(gaussian, a, b, tol=1e-8, rtol=1e-8)', ], }, { 'name' : 'Integrate using Romberg integration', 'snippet' : [ 'gaussian = lambda x: 1/np.sqrt(np.pi) * np.exp(-x**2)', 'a,b = 0,1 # limits of integration', 'result = integrate.romberg(gaussian, a, b, tol=1e-8, rtol=1e-8)', ], }, ], }, { 'name' : 'Integrate given fixed samples', 'sub-menu' : [ { 'name' : 'Trapezoidal rule to compute integral from samples', 'snippet' : [ 'x = np.linspace(1, 5, num=100)', 'y = 3*x**2 + 1', 'integrate.trapz(y, x) # Exact value is 128', ], }, { 'name' : 'Trapezoidal rule to cumulatively compute integral from samples', 'snippet' : [ 'x = np.linspace(1, 5, num=100)', 'y = 3*x**2 + 1', 'integrate.cumtrapz(y, x) # Should range from ~0 to ~128', ], }, { 'name' : "Simpson's rule to compute integral from samples", 'snippet' : [ 'x = np.linspace(1, 5, num=100)', 'y = 3*x**2 + 1', 'integrate.simps(y, x) # Exact value is 128', ], }, { 'name' : 'Romberg Integration to compute integral from $2^k + 1$ evenly spaced samples', 'snippet' : [ 'x = np.linspace(1, 5, num=2**7+1)', 'y = 3*x**2 + 1', 'integrate.romb(y, x) # Exact value is 128', ], }, ], }, { 'name' : 'Numerically integrate ODE systems', 'sub-menu' : [ { 'name' : 'General integration of ordinary differential equations', 'snippet' : [ 'from scipy.special import gamma, airy', 'def func(y, t):', ' return [t*y[1], y[0]]', 'x = np.arange(0, 4.0, 0.01)', 'y_0 = [-1.0 / 3**(1.0/3.0) / gamma(1.0/3.0), 1.0 / 3**(2.0/3.0) / gamma(2.0/3.0)]', 'Ai, Aip, Bi, Bip = airy(x)', 'y = odeint(func, y_0, x, rtol=1e-12, atol=1e-12) # Exact answer: (Aip, Ai)', ], }, { 'name' : 'General integration of ordinary differential equations with known gradient', 'snippet' : [ 'from scipy.special import gamma, airy', 'def func(y, t):', ' return [t*y[1], y[0]]', 'def gradient(y, t):', ' return [[0,t], [1,0]]', 'x = np.arange(0, 4.0, 0.01)', 'y_0 = [-1.0 / 3**(1.0/3.0) / gamma(1.0/3.0), 1.0 / 3**(2.0/3.0) / gamma(2.0/3.0)]', 'Ai, Aip, Bi, Bip = airy(x)', 'y = odeint(func, y_0, x, rtol=1e-12, atol=1e-12, Dfun=gradient) # Exact answer: (Aip, Ai)', ], }, { 'name' : 'Integrate ODE using VODE and ZVODE routines', 'snippet' : [ "def f(t, y, arg1):", " return [1j*arg1*y[0] + y[1], -arg1*y[1]**2]", "def jac(t, y, arg1):", " return [[1j*arg1, 1], [0, -arg1*2*y[1]]]", "y0 = [1.0j, 2.0]", "t0, t1, dt = 0.0, 10.0, 1.0", "r = integrate.ode(f, jac).set_integrator('zvode', method='bdf')", "r.set_initial_value(y0, t0)", "r.set_f_params(2.0)", "r.set_jac_params(2.0)", "while r.successful() and r.t < t1:", " r.integrate(r.t+dt)", " print('{0}: {1}'.format(r.t, r.y))", ], }, // { // 'name' : 'Integrate complex ODE using VODE and ZVODE routines', // 'snippet' : [ // 'integrate.complex_ode', // ], // }, ], }, ], }, { 'name' : 'Interpolation and smoothing splines', 'sub-menu' : [ { 'name' : 'Setup', 'snippet' : ['from scipy import interpolate',], }, '---', { 'name' : 'interp1d', 'snippet' : [ '# NOTE: `interp1d` is very slow; prefer `InterpolatedUnivariateSpline`', 'x = np.linspace(0, 10, 10)', 'y = np.cos(-x**2/8.0)', "f = interpolate.interp1d(x, y, kind='cubic')", 'X = np.linspace(0, 10, 100)', 'Y = f(X)', ], }, { 'name' : 'splrep / splrev', 'snippet' : [ 'x = np.arange(0, 2*np.pi+np.pi/4, 2*np.pi/8)', 'y = np.sin(x)', 'tck = interpolate.splrep(x, y, s=0)', 'xnew = np.arange(0,2*np.pi,np.pi/50)', 'ynew = interpolate.splev(xnew, tck, der=0)', ], }, { 'name' : 'InterpolatedUnivariateSpline', 'snippet' : [ 'x = np.arange(0, 2*np.pi+np.pi/4, 2*np.pi/8)', 'y = np.sin(x)', 's = interpolate.InterpolatedUnivariateSpline(x, y)', 'xnew = np.arange(0, 2*np.pi, np.pi/50)', 'ynew = s(xnew)', ], }, { 'name' : 'Multivariate interpolation', 'sub-menu' : [ ], }, { 'name' : '2-D Splines', 'sub-menu' : [ ], }, { 'name' : 'Radial basis functions', 'sub-menu' : [ ], }, ], }, // { // 'name' : 'Input and Output', // 'sub-menu' : [ // { // 'name' : 'Setup', // 'snippet' : ['from scipy import io',], // }, // '---', // ], // }, { 'name' : 'Linear algebra', 'sub-menu' : [ { 'name' : 'Setup', 'snippet' : ['from scipy import linalg',], }, '---', { 'name' : 'Docs', 'external-link' : 'http://docs.scipy.org/doc/scipy-0.15.1/reference/linalg.html' }, ], }, // { // 'name' : 'Maximum entropy methods', // 'sub-menu' : [ // { // 'name' : 'Setup', // 'snippet' : ['from scipy import maxentropy',], // }, // '---', // ], // }, // { // 'name' : 'N-dimensional image processing', // 'sub-menu' : [ // { // 'name' : 'Setup', // 'snippet' : ['from scipy import ndimage',], // }, // '---', // ], // }, // { // 'name' : 'Orthogonal distance regression', // 'sub-menu' : [ // { // 'name' : 'Setup', // 'snippet' : ['from scipy import odr',], // }, // '---', // ], // }, { 'name' : 'Optimization and root-finding routines', 'sub-menu' : [ { 'name' : 'Setup', 'snippet' : [ 'from scipy import optimize', ], }, '---', { 'name' : 'Scalar function minimization', 'sub-menu' : [ { 'name' : 'Unconstrained minimization', 'snippet' : [ 'f = lambda x: (x - 2) * (x + 1)**2', "res = optimize.minimize_scalar(f, method='brent')", 'print(res.x)', ], }, { 'name' : 'Bounded minimization', 'snippet' : [ 'from scipy.special import j1 # Test function', "res = optimize.minimize_scalar(j1, bounds=(4, 7), method='bounded')", 'print(res.x)', ], }, ], }, { 'name' : 'General-purpose optimization', 'sub-menu' : [ { 'name' : 'Nelder-Mead Simplex algorithm', 'snippet' : [ 'def rosen(x):', ' """The Rosenbrock function"""', ' return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)', 'x0 = np.array([1.3, 0.7, 0.8, 1.9, 1.2])', "res = optimize.minimize(rosen, x0, method='nelder-mead',", " options={'xtol': 1e-8, 'disp': True})", 'print(res.x)',], }, { 'name' : 'Broyden-Fletcher-Goldfarb-Shanno (BFGS), analytical derivative', 'snippet' : [ 'def rosen(x):', ' """The Rosenbrock function"""', ' return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)', 'def rosen_der(x):', ' """Derivative of the Rosenbrock function"""', ' xm = x[1:-1]', ' xm_m1 = x[:-2]', ' xm_p1 = x[2:]', ' der = np.zeros_like(x)', ' der[1:-1] = 200*(xm-xm_m1**2) - 400*(xm_p1 - xm**2)*xm - 2*(1-xm)', ' der[0] = -400*x[0]*(x[1]-x[0]**2) - 2*(1-x[0])', ' der[-1] = 200*(x[-1]-x[-2]**2)', ' return der', 'x0 = np.array([1.3, 0.7, 0.8, 1.9, 1.2])', "res = optimize.minimize(rosen, x0, method='BFGS', jac=rosen_der, options={'disp': True})", 'print(res.x)',], }, { 'name' : 'Broyden-Fletcher-Goldfarb-Shanno (BFGS), finite-difference derivative', 'snippet' : [ 'def rosen(x):', ' """The Rosenbrock function"""', ' return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)', 'x0 = np.array([1.3, 0.7, 0.8, 1.9, 1.2])', "res = optimize.minimize(rosen, x0, method='BFGS', options={'disp': True})", 'print(res.x)',], }, { 'name' : 'Newton-Conjugate-Gradient, full Hessian', 'snippet' : [ 'def rosen(x):', ' """The Rosenbrock function"""', ' return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)', 'def rosen_der(x):', ' """Derivative of the Rosenbrock function"""', ' xm = x[1:-1]', ' xm_m1 = x[:-2]', ' xm_p1 = x[2:]', ' der = np.zeros_like(x)', ' der[1:-1] = 200*(xm-xm_m1**2) - 400*(xm_p1 - xm**2)*xm - 2*(1-xm)', ' der[0] = -400*x[0]*(x[1]-x[0]**2) - 2*(1-x[0])', ' der[-1] = 200*(x[-1]-x[-2]**2)', ' return der', 'def rosen_hess(x):', ' x = np.asarray(x)', ' H = np.diag(-400*x[:-1],1) - np.diag(400*x[:-1],-1)', ' diagonal = np.zeros_like(x)', ' diagonal[0] = 1200*x[0]-400*x[1]+2', ' diagonal[-1] = 200', ' diagonal[1:-1] = 202 + 1200*x[1:-1]**2 - 400*x[2:]', ' H = H + np.diag(diagonal)', ' return H', 'x0 = np.array([1.3, 0.7, 0.8, 1.9, 1.2])', "res = optimize.minimize(rosen, x0, method='Newton-CG', jac=rosen_der, hess=rosen_hess,", " options={'xtol': 1e-8, 'disp': True})", 'print(res.x)'], }, { 'name' : 'Newton-Conjugate-Gradient, Hessian product', 'snippet' : [ 'def rosen(x):', ' """The Rosenbrock function"""', ' return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)', 'def rosen_der(x):', ' """Derivative of the Rosenbrock function"""', ' xm = x[1:-1]', ' xm_m1 = x[:-2]', ' xm_p1 = x[2:]', ' der = np.zeros_like(x)', ' der[1:-1] = 200*(xm-xm_m1**2) - 400*(xm_p1 - xm**2)*xm - 2*(1-xm)', ' der[0] = -400*x[0]*(x[1]-x[0]**2) - 2*(1-x[0])', ' der[-1] = 200*(x[-1]-x[-2]**2)', ' return der', 'def rosen_hess_p(x,p):', ' x = np.asarray(x)', ' Hp = np.zeros_like(x)', ' Hp[0] = (1200*x[0]**2 - 400*x[1] + 2)*p[0] - 400*x[0]*p[1]', ' Hp[1:-1] = (-400*x[:-2]*p[:-2]+(202+1200*x[1:-1]**2-400*x[2:])*p[1:-1] ', ' -400*x[1:-1]*p[2:])', ' Hp[-1] = -400*x[-2]*p[-2] + 200*p[-1]', ' return Hp', 'x0 = np.array([1.3, 0.7, 0.8, 1.9, 1.2])', "res = optimize.minimize(rosen, x0, method='Newton-CG', jac=rosen_der, hessp=rosen_hess_p,", " options={'xtol': 1e-8, 'disp': True})", 'print(res.x)'], }, ], }, { 'name' : 'Constrained multivariate minimization', 'sub-menu' : [ { 'name' : 'Unconstrained Sequential Least SQuares Programming (SLSQP)', 'snippet' : [ 'def func(x, sign=1.0):', ' """ Objective function """', ' return sign*(2*x[0]*x[1] + 2*x[0] - x[0]**2 - 2*x[1]**2)', 'def func_deriv(x, sign=1.0):', ' """ Derivative of objective function """', ' dfdx0 = sign*(-2*x[0] + 2*x[1] + 2)', ' dfdx1 = sign*(2*x[0] - 4*x[1])', ' return np.array([ dfdx0, dfdx1 ])', "res = optimize.minimize(func, [-1.0,1.0], args=(-1.0,), jac=func_deriv,", " method='SLSQP', options={'disp': True})", 'print(res.x)', ], }, { 'name' : 'Constrained Sequential Least SQuares Programming (SLSQP)', 'snippet' : [ 'def func(x, sign=1.0):', ' """ Objective function """', ' return sign*(2*x[0]*x[1] + 2*x[0] - x[0]**2 - 2*x[1]**2)', 'def func_deriv(x, sign=1.0):', ' """ Derivative of objective function """', ' dfdx0 = sign*(-2*x[0] + 2*x[1] + 2)', ' dfdx1 = sign*(2*x[0] - 4*x[1])', ' return np.array([ dfdx0, dfdx1 ])', '# Constraints correspond to x**3-y=0 and y-1>=0, respectively', "cons = ({'type': 'eq',", " 'fun' : lambda x: np.array([x[0]**3 - x[1]]),", " 'jac' : lambda x: np.array([3.0*(x[0]**2.0), -1.0])},", " {'type': 'ineq',", " 'fun' : lambda x: np.array([x[1] - 1]),", " 'jac' : lambda x: np.array([0.0, 1.0])})", "res = optimize.minimize(func, [-1.0,1.0], args=(-1.0,), jac=func_deriv,", " constraints=cons, method='SLSQP', options={'disp': True})", 'print(res.x)', ], }, ], }, { 'name' : 'Fitting (see also numpy.polynomial)', 'sub-menu' : [ { 'name' : 'Basic function fitting', 'snippet' : [ 'def fitting_function(x, a, b, c):', ' return a * np.exp(-b * x) + c', 'xdata = np.linspace(0, 4, 50)', 'ydata = fitting_function(xdata, 2.5, 1.3, 0.5) + 0.2 * np.random.normal(size=len(xdata))', 'optimal_parameters, estimated_covariance = optimize.curve_fit(fitting_function, xdata, ydata)', 'estimated_std_dev = np.sqrt(np.diag(estimated_covariance))', ], }, ], }, ], }, // { // 'name' : 'Signal processing', // 'sub-menu' : [ // { // 'name' : 'Setup', // 'snippet' : ['from scipy import signal',], // }, // '---', // ], // }, // { // 'name' : 'Sparse matrices and associated routines', // 'sub-menu' : [ // { // 'name' : 'Setup', // 'snippet' : ['from scipy import sparse',], // }, // '---', // ], // }, // { // 'name' : 'Spatial data structures and algorithms', // 'sub-menu' : [ // { // 'name' : 'Setup', // 'snippet' : ['from scipy import spatial',], // }, // '---', // ], // }, scipy_special, { 'name' : 'Statistical distributions and functions', 'sub-menu' : [ { 'name' : 'Setup', 'snippet' : ['from scipy import stats',], }, '---', { 'name' : 'Docs', 'external-link' : 'http://docs.scipy.org/doc/scipy-0.15.1/reference/stats.html' }, ], }, // { // 'name' : 'C/C++ integration', // 'sub-menu' : [ // { // 'name' : 'Setup', // 'snippet' : ['from scipy import weave',], // }, // '---', // ], // }, ], }; });