Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .bashrc +107 -0
- .cache/pip/http-v2/0/1/f/2/0/01f2082df50502ba9492d64e69db99d1fdb5730707a16c6264b355b8 +0 -0
- .cache/pip/http-v2/0/2/f/8/e/02f8e820ca8231526982c4a2b93baef519d0948ff85c925acd226f06 +0 -0
- .cache/pip/http-v2/0/5/8/9/6/0589682f53f4c502330bc0fa01138806ce0467c549c2af469b6afb31.body +0 -0
- .cache/pip/http-v2/0/5/e/2/2/05e22b8b3169eed822187b7e670f3dc47b0666b777d95f87de8fb5e9 +0 -0
- .cache/pip/http-v2/0/5/e/2/2/05e22b8b3169eed822187b7e670f3dc47b0666b777d95f87de8fb5e9.body +0 -0
- .cache/pip/http-v2/0/6/7/2/6/06726d442b7e33afe35f1740674b6dee72357a95eef3aca0ef7abf21.body +0 -0
- .cache/pip/http-v2/0/e/a/4/f/0ea4f1b2570ca3d64073f1277e4faa435bd7c7cbadafd80723949de4 +0 -0
- .cache/pip/http-v2/0/e/a/4/f/0ea4f1b2570ca3d64073f1277e4faa435bd7c7cbadafd80723949de4.body +0 -0
- .cache/pip/http-v2/1/0/e/d/c/10edc2fedb88f9a82f91dc7f8666c74a4e7067dbd945b9923a040482.body +0 -0
- .cache/pip/http-v2/1/6/9/3/2/1693297fb9daf7bfe370bf51d371acfeb8ff40759bf8650dfd404ba4.body +0 -0
- .cache/pip/http-v2/1/8/e/e/a/18eea207de73c88bb45229bed4bcc74fbcbddadf2aa9f49e4df1f66a +0 -0
- .cache/pip/http-v2/1/a/9/9/5/1a995e0685d0b5c5a3f3321cda9ebcbc376a9137828d1c100a493532 +0 -0
- .cache/pip/http-v2/1/d/5/8/0/1d580297aa71908bf0d94823d03615447cfaaf5e778d47640756ae80 +0 -0
- .cache/pip/http-v2/1/d/5/8/0/1d580297aa71908bf0d94823d03615447cfaaf5e778d47640756ae80.body +0 -0
- .cache/pip/http-v2/1/d/8/a/2/1d8a24cdff71edbc3f733b6b4d52640c1c1129289938aa4d1c7adcf5 +0 -0
- .cache/pip/http-v2/1/e/2/b/1/1e2b1734fc3c57a4733131da81a6167573fc77057172172ceee83a22 +0 -0
- .cache/pip/http-v2/1/e/2/b/1/1e2b1734fc3c57a4733131da81a6167573fc77057172172ceee83a22.body +0 -0
- .cache/pip/http-v2/4/2/f/8/a/42f8a0202dbbd3a131c6443d28a5b01775c53d41dec7e7928a8b5a4c.body +140 -0
- .cache/pip/http-v2/4/5/9/c/7/459c78bacdedb04c7e03d152081522ecf0ff46e1d14e7503997ea6c8.body +0 -0
- .cache/pip/http-v2/4/a/7/8/1/4a7814588b6ac1f8145ad3d5ec0e03ad23d92f14a1ce01843a6998d7 +0 -0
- .cache/pip/http-v2/4/a/7/8/1/4a7814588b6ac1f8145ad3d5ec0e03ad23d92f14a1ce01843a6998d7.body +0 -0
- .cache/pip/http-v2/4/d/2/7/2/4d272e6453941ce8b0a37a02cdb1685fc612c33441fa74691fb40656 +0 -0
- .cache/pip/http-v2/7/1/b/9/d/71b9df22187d5c54f1147d4ac0849d1438ec19aedc20363a3478b854 +0 -0
- .cache/pip/http-v2/7/2/2/9/f/7229fb50bdca3f16cb03ca953b540cb67fb07fb971b675db32ae3239 +0 -0
- .cache/pip/http-v2/7/3/5/4/e/7354e15b7a2b590d713d4782bd16917fac9db3c087fa80d4d8dc0db5 +0 -0
- .cache/pip/http-v2/7/3/5/4/e/7354e15b7a2b590d713d4782bd16917fac9db3c087fa80d4d8dc0db5.body +212 -0
- .cache/pip/http-v2/7/7/6/7/2/7767287c95ec4491394e4204f2ba3be9eb9e3ed9ca0ffd45d421b772.body +0 -0
- .cache/pip/http-v2/7/c/4/b/8/7c4b8a19f4f69494c22868b76649cd91120de17447e4ff71fb7a7f10.body +0 -0
- .cache/pip/http-v2/7/e/1/d/d/7e1dd8fd372b5a4d9dab3a30df124fb3e1f8789a9ab79f867640876a.body +0 -0
- .cache/pip/http-v2/a/6/6/7/4/a6674e44f8dbb270324765d1fb568b86858877aed299a2428f81e802 +0 -0
- .cache/pip/http-v2/a/b/7/2/8/ab7286aff652f0ea3cc68322991122267ea675cbb86a9b1ccfe4ace3 +0 -0
- .cache/pip/http-v2/a/d/e/c/9/adec97b9b98035179c2f2a0370fc49fcf626678705d2f38c1dcdafa7 +0 -0
- .cache/pip/http-v2/b/6/8/7/d/b687d90e2a44328db9c9ecd9af0a9c577a4e68f9d239bbb73aebc319.body +62 -0
- .cache/pip/http-v2/b/8/b/f/4/b8bf4a44dbb1c5e59b2500975b68a4301d11f85878b612151a649c3d +0 -0
- .cache/pip/http-v2/b/f/c/a/5/bfca522eaf7404612287f82a4ec69fbc52a846f5a5757f91528163da +0 -0
- .cache/pip/http-v2/b/f/d/6/3/bfd6322b8f4c82d6b7ed54608512187e126478b3b0851b74973f4adc.body +0 -0
- .launchpadlib/api.launchpad.net/cache/api.launchpad.net,devel,-application,json,fc4e1e3a03117146fb1e9d492ab76690 +19 -0
- .local/share/Trash/info/train_001.bin.trashinfo +3 -0
- .local/share/Trash/info/train_003.bin.trashinfo +3 -0
- .local/share/Trash/info/train_006.bin.trashinfo +3 -0
- .local/share/Trash/info/train_007.bin.trashinfo +3 -0
- .local/share/jupyter/nbextensions/skip-traceback/icon.png +0 -0
- .local/share/jupyter/nbextensions/skip-traceback/skip-traceback.png +0 -0
- .local/share/jupyter/nbextensions/snippets_menu/main.js +292 -0
- .local/share/jupyter/nbextensions/snippets_menu/screenshot3.png +0 -0
- .local/share/jupyter/nbextensions/snippets_menu/snippets_submenu_python.js +24 -0
- .local/share/jupyter/nbextensions/snippets_menu/snippets_submenus_python/scipy.js +620 -0
- .local/share/jupyter/nbextensions/snippets_menu/snippets_submenus_python/scipy_special.js +2198 -0
- .local/share/jupyter/nbextensions/snippets_menu/snippets_submenus_python/sympy_assumptions.js +109 -0
.bashrc
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ~/.bashrc: executed by bash(1) for non-login shells.
|
| 2 |
+
# see /usr/share/doc/bash/examples/startup-files (in the package bash-doc)
|
| 3 |
+
# for examples
|
| 4 |
+
|
| 5 |
+
# If not running interactively, don't do anything
|
| 6 |
+
[ -z "$PS1" ] && return
|
| 7 |
+
|
| 8 |
+
# don't put duplicate lines in the history. See bash(1) for more options
|
| 9 |
+
# ... or force ignoredups and ignorespace
|
| 10 |
+
HISTCONTROL=ignoredups:ignorespace
|
| 11 |
+
|
| 12 |
+
# append to the history file, don't overwrite it
|
| 13 |
+
shopt -s histappend
|
| 14 |
+
|
| 15 |
+
# for setting history length see HISTSIZE and HISTFILESIZE in bash(1)
|
| 16 |
+
HISTSIZE=1000
|
| 17 |
+
HISTFILESIZE=2000
|
| 18 |
+
|
| 19 |
+
# check the window size after each command and, if necessary,
|
| 20 |
+
# update the values of LINES and COLUMNS.
|
| 21 |
+
shopt -s checkwinsize
|
| 22 |
+
|
| 23 |
+
# make less more friendly for non-text input files, see lesspipe(1)
|
| 24 |
+
[ -x /usr/bin/lesspipe ] && eval "$(SHELL=/bin/sh lesspipe)"
|
| 25 |
+
|
| 26 |
+
# set variable identifying the chroot you work in (used in the prompt below)
|
| 27 |
+
if [ -z "$debian_chroot" ] && [ -r /etc/debian_chroot ]; then
|
| 28 |
+
debian_chroot=$(cat /etc/debian_chroot)
|
| 29 |
+
fi
|
| 30 |
+
|
| 31 |
+
# set a fancy prompt (non-color, unless we know we "want" color)
|
| 32 |
+
case "$TERM" in
|
| 33 |
+
xterm-color) color_prompt=yes;;
|
| 34 |
+
esac
|
| 35 |
+
|
| 36 |
+
# uncomment for a colored prompt, if the terminal has the capability; turned
|
| 37 |
+
# off by default to not distract the user: the focus in a terminal window
|
| 38 |
+
# should be on the output of commands, not on the prompt
|
| 39 |
+
#force_color_prompt=yes
|
| 40 |
+
|
| 41 |
+
if [ -n "$force_color_prompt" ]; then
|
| 42 |
+
if [ -x /usr/bin/tput ] && tput setaf 1 >&/dev/null; then
|
| 43 |
+
# We have color support; assume it's compliant with Ecma-48
|
| 44 |
+
# (ISO/IEC-6429). (Lack of such support is extremely rare, and such
|
| 45 |
+
# a case would tend to support setf rather than setaf.)
|
| 46 |
+
color_prompt=yes
|
| 47 |
+
else
|
| 48 |
+
color_prompt=
|
| 49 |
+
fi
|
| 50 |
+
fi
|
| 51 |
+
|
| 52 |
+
if [ "$color_prompt" = yes ]; then
|
| 53 |
+
PS1='${debian_chroot:+($debian_chroot)}\[\033[01;32m\]\u@\h\[\033[00m\]:\[\033[01;34m\]\w\[\033[00m\]\$ '
|
| 54 |
+
else
|
| 55 |
+
PS1='${debian_chroot:+($debian_chroot)}\u@\h:\w\$ '
|
| 56 |
+
fi
|
| 57 |
+
unset color_prompt force_color_prompt
|
| 58 |
+
|
| 59 |
+
# If this is an xterm set the title to user@host:dir
|
| 60 |
+
case "$TERM" in
|
| 61 |
+
xterm*|rxvt*)
|
| 62 |
+
PS1="\[\e]0;${debian_chroot:+($debian_chroot)}\u@\h: \w\a\]$PS1"
|
| 63 |
+
;;
|
| 64 |
+
*)
|
| 65 |
+
;;
|
| 66 |
+
esac
|
| 67 |
+
|
| 68 |
+
# enable color support of ls and also add handy aliases
|
| 69 |
+
if [ -x /usr/bin/dircolors ]; then
|
| 70 |
+
test -r ~/.dircolors && eval "$(dircolors -b ~/.dircolors)" || eval "$(dircolors -b)"
|
| 71 |
+
alias ls='ls --color=auto'
|
| 72 |
+
#alias dir='dir --color=auto'
|
| 73 |
+
#alias vdir='vdir --color=auto'
|
| 74 |
+
|
| 75 |
+
alias grep='grep --color=auto'
|
| 76 |
+
alias fgrep='fgrep --color=auto'
|
| 77 |
+
alias egrep='egrep --color=auto'
|
| 78 |
+
fi
|
| 79 |
+
|
| 80 |
+
# some more ls aliases
|
| 81 |
+
alias ll='ls -alF'
|
| 82 |
+
alias la='ls -A'
|
| 83 |
+
alias l='ls -CF'
|
| 84 |
+
|
| 85 |
+
# Alias definitions.
|
| 86 |
+
# You may want to put all your additions into a separate file like
|
| 87 |
+
# ~/.bash_aliases, instead of adding them here directly.
|
| 88 |
+
# See /usr/share/doc/bash-doc/examples in the bash-doc package.
|
| 89 |
+
|
| 90 |
+
if [ -f ~/.bash_aliases ]; then
|
| 91 |
+
. ~/.bash_aliases
|
| 92 |
+
fi
|
| 93 |
+
|
| 94 |
+
# enable programmable completion features (you don't need to enable
|
| 95 |
+
# this, if it's already enabled in /etc/bash.bashrc and /etc/profile
|
| 96 |
+
# sources /etc/bash.bashrc).
|
| 97 |
+
#if [ -f /etc/bash_completion ] && ! shopt -oq posix; then
|
| 98 |
+
# . /etc/bash_completion
|
| 99 |
+
#fi
|
| 100 |
+
cat /etc/runpod.txt
|
| 101 |
+
echo -e "\nFor detailed documentation and guides, please visit:\n\033[1;34mhttps://docs.runpod.io/\033[0m and \033[1;34mhttps://blog.runpod.io/\033[0m\n\n"
|
| 102 |
+
PATH='/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin'
|
| 103 |
+
VAST_CONTAINERLABEL="$(cat ~/.vast_containerlabel)"
|
| 104 |
+
PS1="\[\e]0;\u@$VAST_CONTAINERLABEL: \w\a\]\[\e[01;34m\]\u\[\e[m\e[01m\]@\[\e[01;36m\]$VAST_CONTAINERLABEL\[\e[m\e[01m\]:\[\e[01;37m\]\w\$\[\e[m\] " ; if [ ! -e "$HOME/.no_auto_tmux" ] && [[ -z "$TMUX" ]] && [ "$SSH_CONNECTION" != "" ] && [ "$TMUX_STARTED" = "" ]; then tmux attach-session -t ssh_tmux || tmux new-session -s ssh_tmux; exit; elif ! [[ -z "$TMUX" ]]; then echo 'Welcome to your vast.ai container! This session is running in `tmux`.'; echo 'To disconnect without closing your processes, press ctrl+b, release, then d.'; echo 'To disable auto-tmux, run `touch ~/.no_auto_tmux` and reconnect. See also https://tmuxcheatsheet.com/'; fi;
|
| 105 |
+
DIRECT_PORT_START=0
|
| 106 |
+
DIRECT_PORT_END=0
|
| 107 |
+
VAST_CONTAINERLABEL=C.12728823
|
.cache/pip/http-v2/0/1/f/2/0/01f2082df50502ba9492d64e69db99d1fdb5730707a16c6264b355b8
ADDED
|
Binary file (1.13 kB). View file
|
|
|
.cache/pip/http-v2/0/2/f/8/e/02f8e820ca8231526982c4a2b93baef519d0948ff85c925acd226f06
ADDED
|
Binary file (1.82 kB). View file
|
|
|
.cache/pip/http-v2/0/5/8/9/6/0589682f53f4c502330bc0fa01138806ce0467c549c2af469b6afb31.body
ADDED
|
Binary file (64.9 kB). View file
|
|
|
.cache/pip/http-v2/0/5/e/2/2/05e22b8b3169eed822187b7e670f3dc47b0666b777d95f87de8fb5e9
ADDED
|
Binary file (1.11 kB). View file
|
|
|
.cache/pip/http-v2/0/5/e/2/2/05e22b8b3169eed822187b7e670f3dc47b0666b777d95f87de8fb5e9.body
ADDED
|
Binary file (24.3 kB). View file
|
|
|
.cache/pip/http-v2/0/6/7/2/6/06726d442b7e33afe35f1740674b6dee72357a95eef3aca0ef7abf21.body
ADDED
|
Binary file (7.81 kB). View file
|
|
|
.cache/pip/http-v2/0/e/a/4/f/0ea4f1b2570ca3d64073f1277e4faa435bd7c7cbadafd80723949de4
ADDED
|
Binary file (1.81 kB). View file
|
|
|
.cache/pip/http-v2/0/e/a/4/f/0ea4f1b2570ca3d64073f1277e4faa435bd7c7cbadafd80723949de4.body
ADDED
|
Binary file (66.6 kB). View file
|
|
|
.cache/pip/http-v2/1/0/e/d/c/10edc2fedb88f9a82f91dc7f8666c74a4e7067dbd945b9923a040482.body
ADDED
|
Binary file (133 kB). View file
|
|
|
.cache/pip/http-v2/1/6/9/3/2/1693297fb9daf7bfe370bf51d371acfeb8ff40759bf8650dfd404ba4.body
ADDED
|
Binary file (273 kB). View file
|
|
|
.cache/pip/http-v2/1/8/e/e/a/18eea207de73c88bb45229bed4bcc74fbcbddadf2aa9f49e4df1f66a
ADDED
|
Binary file (1.19 kB). View file
|
|
|
.cache/pip/http-v2/1/a/9/9/5/1a995e0685d0b5c5a3f3321cda9ebcbc376a9137828d1c100a493532
ADDED
|
Binary file (1.81 kB). View file
|
|
|
.cache/pip/http-v2/1/d/5/8/0/1d580297aa71908bf0d94823d03615447cfaaf5e778d47640756ae80
ADDED
|
Binary file (1.82 kB). View file
|
|
|
.cache/pip/http-v2/1/d/5/8/0/1d580297aa71908bf0d94823d03615447cfaaf5e778d47640756ae80.body
ADDED
|
Binary file (23.4 kB). View file
|
|
|
.cache/pip/http-v2/1/d/8/a/2/1d8a24cdff71edbc3f733b6b4d52640c1c1129289938aa4d1c7adcf5
ADDED
|
Binary file (1.15 kB). View file
|
|
|
.cache/pip/http-v2/1/e/2/b/1/1e2b1734fc3c57a4733131da81a6167573fc77057172172ceee83a22
ADDED
|
Binary file (1.81 kB). View file
|
|
|
.cache/pip/http-v2/1/e/2/b/1/1e2b1734fc3c57a4733131da81a6167573fc77057172172ceee83a22.body
ADDED
|
Binary file (5.58 kB). View file
|
|
|
.cache/pip/http-v2/4/2/f/8/a/42f8a0202dbbd3a131c6443d28a5b01775c53d41dec7e7928a8b5a4c.body
ADDED
|
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Metadata-Version: 2.1
|
| 2 |
+
Name: multidict
|
| 3 |
+
Version: 6.1.0
|
| 4 |
+
Summary: multidict implementation
|
| 5 |
+
Home-page: https://github.com/aio-libs/multidict
|
| 6 |
+
Author: Andrew Svetlov
|
| 7 |
+
Author-email: [email protected]
|
| 8 |
+
License: Apache 2
|
| 9 |
+
Project-URL: Chat: Matrix, https://matrix.to/#/#aio-libs:matrix.org
|
| 10 |
+
Project-URL: Chat: Matrix Space, https://matrix.to/#/#aio-libs-space:matrix.org
|
| 11 |
+
Project-URL: CI: GitHub, https://github.com/aio-libs/multidict/actions
|
| 12 |
+
Project-URL: Code of Conduct, https://github.com/aio-libs/.github/blob/master/CODE_OF_CONDUCT.md
|
| 13 |
+
Project-URL: Coverage: codecov, https://codecov.io/github/aio-libs/multidict
|
| 14 |
+
Project-URL: Docs: Changelog, https://multidict.aio-libs.org/en/latest/changes/
|
| 15 |
+
Project-URL: Docs: RTD, https://multidict.aio-libs.org
|
| 16 |
+
Project-URL: GitHub: issues, https://github.com/aio-libs/multidict/issues
|
| 17 |
+
Project-URL: GitHub: repo, https://github.com/aio-libs/multidict
|
| 18 |
+
Classifier: Development Status :: 5 - Production/Stable
|
| 19 |
+
Classifier: Intended Audience :: Developers
|
| 20 |
+
Classifier: License :: OSI Approved :: Apache Software License
|
| 21 |
+
Classifier: Programming Language :: Python
|
| 22 |
+
Classifier: Programming Language :: Python :: 3
|
| 23 |
+
Classifier: Programming Language :: Python :: 3.8
|
| 24 |
+
Classifier: Programming Language :: Python :: 3.9
|
| 25 |
+
Classifier: Programming Language :: Python :: 3.10
|
| 26 |
+
Classifier: Programming Language :: Python :: 3.11
|
| 27 |
+
Classifier: Programming Language :: Python :: 3.12
|
| 28 |
+
Classifier: Programming Language :: Python :: 3.13
|
| 29 |
+
Requires-Python: >=3.8
|
| 30 |
+
Description-Content-Type: text/x-rst
|
| 31 |
+
License-File: LICENSE
|
| 32 |
+
Requires-Dist: typing-extensions >=4.1.0 ; python_version < "3.11"
|
| 33 |
+
|
| 34 |
+
=========
|
| 35 |
+
multidict
|
| 36 |
+
=========
|
| 37 |
+
|
| 38 |
+
.. image:: https://github.com/aio-libs/multidict/actions/workflows/ci-cd.yml/badge.svg
|
| 39 |
+
:target: https://github.com/aio-libs/multidict/actions
|
| 40 |
+
:alt: GitHub status for master branch
|
| 41 |
+
|
| 42 |
+
.. image:: https://codecov.io/gh/aio-libs/multidict/branch/master/graph/badge.svg
|
| 43 |
+
:target: https://codecov.io/gh/aio-libs/multidict
|
| 44 |
+
:alt: Coverage metrics
|
| 45 |
+
|
| 46 |
+
.. image:: https://img.shields.io/pypi/v/multidict.svg
|
| 47 |
+
:target: https://pypi.org/project/multidict
|
| 48 |
+
:alt: PyPI
|
| 49 |
+
|
| 50 |
+
.. image:: https://readthedocs.org/projects/multidict/badge/?version=latest
|
| 51 |
+
:target: https://multidict.aio-libs.org
|
| 52 |
+
:alt: Read The Docs build status badge
|
| 53 |
+
|
| 54 |
+
.. image:: https://img.shields.io/pypi/pyversions/multidict.svg
|
| 55 |
+
:target: https://pypi.org/project/multidict
|
| 56 |
+
:alt: Python versions
|
| 57 |
+
|
| 58 |
+
.. image:: https://img.shields.io/matrix/aio-libs:matrix.org?label=Discuss%20on%20Matrix%20at%20%23aio-libs%3Amatrix.org&logo=matrix&server_fqdn=matrix.org&style=flat
|
| 59 |
+
:target: https://matrix.to/#/%23aio-libs:matrix.org
|
| 60 |
+
:alt: Matrix Room — #aio-libs:matrix.org
|
| 61 |
+
|
| 62 |
+
.. image:: https://img.shields.io/matrix/aio-libs-space:matrix.org?label=Discuss%20on%20Matrix%20at%20%23aio-libs-space%3Amatrix.org&logo=matrix&server_fqdn=matrix.org&style=flat
|
| 63 |
+
:target: https://matrix.to/#/%23aio-libs-space:matrix.org
|
| 64 |
+
:alt: Matrix Space — #aio-libs-space:matrix.org
|
| 65 |
+
|
| 66 |
+
Multidict is dict-like collection of *key-value pairs* where key
|
| 67 |
+
might occur more than once in the container.
|
| 68 |
+
|
| 69 |
+
Introduction
|
| 70 |
+
------------
|
| 71 |
+
|
| 72 |
+
*HTTP Headers* and *URL query string* require specific data structure:
|
| 73 |
+
*multidict*. It behaves mostly like a regular ``dict`` but it may have
|
| 74 |
+
several *values* for the same *key* and *preserves insertion ordering*.
|
| 75 |
+
|
| 76 |
+
The *key* is ``str`` (or ``istr`` for case-insensitive dictionaries).
|
| 77 |
+
|
| 78 |
+
``multidict`` has four multidict classes:
|
| 79 |
+
``MultiDict``, ``MultiDictProxy``, ``CIMultiDict``
|
| 80 |
+
and ``CIMultiDictProxy``.
|
| 81 |
+
|
| 82 |
+
Immutable proxies (``MultiDictProxy`` and
|
| 83 |
+
``CIMultiDictProxy``) provide a dynamic view for the
|
| 84 |
+
proxied multidict, the view reflects underlying collection changes. They
|
| 85 |
+
implement the ``collections.abc.Mapping`` interface.
|
| 86 |
+
|
| 87 |
+
Regular mutable (``MultiDict`` and ``CIMultiDict``) classes
|
| 88 |
+
implement ``collections.abc.MutableMapping`` and allows them to change
|
| 89 |
+
their own content.
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
*Case insensitive* (``CIMultiDict`` and
|
| 93 |
+
``CIMultiDictProxy``) assume the *keys* are case
|
| 94 |
+
insensitive, e.g.::
|
| 95 |
+
|
| 96 |
+
>>> dct = CIMultiDict(key='val')
|
| 97 |
+
>>> 'Key' in dct
|
| 98 |
+
True
|
| 99 |
+
>>> dct['Key']
|
| 100 |
+
'val'
|
| 101 |
+
|
| 102 |
+
*Keys* should be ``str`` or ``istr`` instances.
|
| 103 |
+
|
| 104 |
+
The library has optional C Extensions for speed.
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
License
|
| 108 |
+
-------
|
| 109 |
+
|
| 110 |
+
Apache 2
|
| 111 |
+
|
| 112 |
+
Library Installation
|
| 113 |
+
--------------------
|
| 114 |
+
|
| 115 |
+
.. code-block:: bash
|
| 116 |
+
|
| 117 |
+
$ pip install multidict
|
| 118 |
+
|
| 119 |
+
The library is Python 3 only!
|
| 120 |
+
|
| 121 |
+
PyPI contains binary wheels for Linux, Windows and MacOS. If you want to install
|
| 122 |
+
``multidict`` on another operating system (or *Alpine Linux* inside a Docker) the
|
| 123 |
+
tarball will be used to compile the library from source. It requires a C compiler and
|
| 124 |
+
Python headers to be installed.
|
| 125 |
+
|
| 126 |
+
To skip the compilation, please use the `MULTIDICT_NO_EXTENSIONS` environment variable,
|
| 127 |
+
e.g.:
|
| 128 |
+
|
| 129 |
+
.. code-block:: bash
|
| 130 |
+
|
| 131 |
+
$ MULTIDICT_NO_EXTENSIONS=1 pip install multidict
|
| 132 |
+
|
| 133 |
+
Please note, the pure Python (uncompiled) version is about 20-50 times slower depending on
|
| 134 |
+
the usage scenario!!!
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
Changelog
|
| 139 |
+
---------
|
| 140 |
+
See `RTD page <http://multidict.aio-libs.org/en/latest/changes>`_.
|
.cache/pip/http-v2/4/5/9/c/7/459c78bacdedb04c7e03d152081522ecf0ff46e1d14e7503997ea6c8.body
ADDED
|
Binary file (508 kB). View file
|
|
|
.cache/pip/http-v2/4/a/7/8/1/4a7814588b6ac1f8145ad3d5ec0e03ad23d92f14a1ce01843a6998d7
ADDED
|
Binary file (1.15 kB). View file
|
|
|
.cache/pip/http-v2/4/a/7/8/1/4a7814588b6ac1f8145ad3d5ec0e03ad23d92f14a1ce01843a6998d7.body
ADDED
|
Binary file (62.7 kB). View file
|
|
|
.cache/pip/http-v2/4/d/2/7/2/4d272e6453941ce8b0a37a02cdb1685fc612c33441fa74691fb40656
ADDED
|
Binary file (1.82 kB). View file
|
|
|
.cache/pip/http-v2/7/1/b/9/d/71b9df22187d5c54f1147d4ac0849d1438ec19aedc20363a3478b854
ADDED
|
Binary file (1.18 kB). View file
|
|
|
.cache/pip/http-v2/7/2/2/9/f/7229fb50bdca3f16cb03ca953b540cb67fb07fb971b675db32ae3239
ADDED
|
Binary file (1.17 kB). View file
|
|
|
.cache/pip/http-v2/7/3/5/4/e/7354e15b7a2b590d713d4782bd16917fac9db3c087fa80d4d8dc0db5
ADDED
|
Binary file (1.19 kB). View file
|
|
|
.cache/pip/http-v2/7/3/5/4/e/7354e15b7a2b590d713d4782bd16917fac9db3c087fa80d4d8dc0db5.body
ADDED
|
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Metadata-Version: 2.1
|
| 2 |
+
Name: pytest
|
| 3 |
+
Version: 8.3.3
|
| 4 |
+
Summary: pytest: simple powerful testing with Python
|
| 5 |
+
Author: Holger Krekel, Bruno Oliveira, Ronny Pfannschmidt, Floris Bruynooghe, Brianna Laugher, Florian Bruhin, Others (See AUTHORS)
|
| 6 |
+
License: MIT
|
| 7 |
+
Project-URL: Changelog, https://docs.pytest.org/en/stable/changelog.html
|
| 8 |
+
Project-URL: Homepage, https://docs.pytest.org/en/latest/
|
| 9 |
+
Project-URL: Source, https://github.com/pytest-dev/pytest
|
| 10 |
+
Project-URL: Tracker, https://github.com/pytest-dev/pytest/issues
|
| 11 |
+
Project-URL: Twitter, https://twitter.com/pytestdotorg
|
| 12 |
+
Keywords: test,unittest
|
| 13 |
+
Classifier: Development Status :: 6 - Mature
|
| 14 |
+
Classifier: Intended Audience :: Developers
|
| 15 |
+
Classifier: License :: OSI Approved :: MIT License
|
| 16 |
+
Classifier: Operating System :: MacOS
|
| 17 |
+
Classifier: Operating System :: Microsoft :: Windows
|
| 18 |
+
Classifier: Operating System :: POSIX
|
| 19 |
+
Classifier: Operating System :: Unix
|
| 20 |
+
Classifier: Programming Language :: Python :: 3 :: Only
|
| 21 |
+
Classifier: Programming Language :: Python :: 3.8
|
| 22 |
+
Classifier: Programming Language :: Python :: 3.9
|
| 23 |
+
Classifier: Programming Language :: Python :: 3.10
|
| 24 |
+
Classifier: Programming Language :: Python :: 3.11
|
| 25 |
+
Classifier: Programming Language :: Python :: 3.12
|
| 26 |
+
Classifier: Topic :: Software Development :: Libraries
|
| 27 |
+
Classifier: Topic :: Software Development :: Testing
|
| 28 |
+
Classifier: Topic :: Utilities
|
| 29 |
+
Requires-Python: >=3.8
|
| 30 |
+
Description-Content-Type: text/x-rst
|
| 31 |
+
License-File: LICENSE
|
| 32 |
+
License-File: AUTHORS
|
| 33 |
+
Requires-Dist: iniconfig
|
| 34 |
+
Requires-Dist: packaging
|
| 35 |
+
Requires-Dist: pluggy <2,>=1.5
|
| 36 |
+
Requires-Dist: exceptiongroup >=1.0.0rc8 ; python_version < "3.11"
|
| 37 |
+
Requires-Dist: tomli >=1 ; python_version < "3.11"
|
| 38 |
+
Requires-Dist: colorama ; sys_platform == "win32"
|
| 39 |
+
Provides-Extra: dev
|
| 40 |
+
Requires-Dist: argcomplete ; extra == 'dev'
|
| 41 |
+
Requires-Dist: attrs >=19.2 ; extra == 'dev'
|
| 42 |
+
Requires-Dist: hypothesis >=3.56 ; extra == 'dev'
|
| 43 |
+
Requires-Dist: mock ; extra == 'dev'
|
| 44 |
+
Requires-Dist: pygments >=2.7.2 ; extra == 'dev'
|
| 45 |
+
Requires-Dist: requests ; extra == 'dev'
|
| 46 |
+
Requires-Dist: setuptools ; extra == 'dev'
|
| 47 |
+
Requires-Dist: xmlschema ; extra == 'dev'
|
| 48 |
+
|
| 49 |
+
.. image:: https://github.com/pytest-dev/pytest/raw/main/doc/en/img/pytest_logo_curves.svg
|
| 50 |
+
:target: https://docs.pytest.org/en/stable/
|
| 51 |
+
:align: center
|
| 52 |
+
:height: 200
|
| 53 |
+
:alt: pytest
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
------
|
| 57 |
+
|
| 58 |
+
.. image:: https://img.shields.io/pypi/v/pytest.svg
|
| 59 |
+
:target: https://pypi.org/project/pytest/
|
| 60 |
+
|
| 61 |
+
.. image:: https://img.shields.io/conda/vn/conda-forge/pytest.svg
|
| 62 |
+
:target: https://anaconda.org/conda-forge/pytest
|
| 63 |
+
|
| 64 |
+
.. image:: https://img.shields.io/pypi/pyversions/pytest.svg
|
| 65 |
+
:target: https://pypi.org/project/pytest/
|
| 66 |
+
|
| 67 |
+
.. image:: https://codecov.io/gh/pytest-dev/pytest/branch/main/graph/badge.svg
|
| 68 |
+
:target: https://codecov.io/gh/pytest-dev/pytest
|
| 69 |
+
:alt: Code coverage Status
|
| 70 |
+
|
| 71 |
+
.. image:: https://github.com/pytest-dev/pytest/actions/workflows/test.yml/badge.svg
|
| 72 |
+
:target: https://github.com/pytest-dev/pytest/actions?query=workflow%3Atest
|
| 73 |
+
|
| 74 |
+
.. image:: https://results.pre-commit.ci/badge/github/pytest-dev/pytest/main.svg
|
| 75 |
+
:target: https://results.pre-commit.ci/latest/github/pytest-dev/pytest/main
|
| 76 |
+
:alt: pre-commit.ci status
|
| 77 |
+
|
| 78 |
+
.. image:: https://www.codetriage.com/pytest-dev/pytest/badges/users.svg
|
| 79 |
+
:target: https://www.codetriage.com/pytest-dev/pytest
|
| 80 |
+
|
| 81 |
+
.. image:: https://readthedocs.org/projects/pytest/badge/?version=latest
|
| 82 |
+
:target: https://pytest.readthedocs.io/en/latest/?badge=latest
|
| 83 |
+
:alt: Documentation Status
|
| 84 |
+
|
| 85 |
+
.. image:: https://img.shields.io/badge/Discord-pytest--dev-blue
|
| 86 |
+
:target: https://discord.com/invite/pytest-dev
|
| 87 |
+
:alt: Discord
|
| 88 |
+
|
| 89 |
+
.. image:: https://img.shields.io/badge/Libera%20chat-%23pytest-orange
|
| 90 |
+
:target: https://web.libera.chat/#pytest
|
| 91 |
+
:alt: Libera chat
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
The ``pytest`` framework makes it easy to write small tests, yet
|
| 95 |
+
scales to support complex functional testing for applications and libraries.
|
| 96 |
+
|
| 97 |
+
An example of a simple test:
|
| 98 |
+
|
| 99 |
+
.. code-block:: python
|
| 100 |
+
|
| 101 |
+
# content of test_sample.py
|
| 102 |
+
def inc(x):
|
| 103 |
+
return x + 1
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def test_answer():
|
| 107 |
+
assert inc(3) == 5
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
To execute it::
|
| 111 |
+
|
| 112 |
+
$ pytest
|
| 113 |
+
============================= test session starts =============================
|
| 114 |
+
collected 1 items
|
| 115 |
+
|
| 116 |
+
test_sample.py F
|
| 117 |
+
|
| 118 |
+
================================== FAILURES ===================================
|
| 119 |
+
_________________________________ test_answer _________________________________
|
| 120 |
+
|
| 121 |
+
def test_answer():
|
| 122 |
+
> assert inc(3) == 5
|
| 123 |
+
E assert 4 == 5
|
| 124 |
+
E + where 4 = inc(3)
|
| 125 |
+
|
| 126 |
+
test_sample.py:5: AssertionError
|
| 127 |
+
========================== 1 failed in 0.04 seconds ===========================
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
Due to ``pytest``'s detailed assertion introspection, only plain ``assert`` statements are used. See `getting-started <https://docs.pytest.org/en/stable/getting-started.html#our-first-test-run>`_ for more examples.
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
Features
|
| 134 |
+
--------
|
| 135 |
+
|
| 136 |
+
- Detailed info on failing `assert statements <https://docs.pytest.org/en/stable/how-to/assert.html>`_ (no need to remember ``self.assert*`` names)
|
| 137 |
+
|
| 138 |
+
- `Auto-discovery
|
| 139 |
+
<https://docs.pytest.org/en/stable/explanation/goodpractices.html#python-test-discovery>`_
|
| 140 |
+
of test modules and functions
|
| 141 |
+
|
| 142 |
+
- `Modular fixtures <https://docs.pytest.org/en/stable/explanation/fixtures.html>`_ for
|
| 143 |
+
managing small or parametrized long-lived test resources
|
| 144 |
+
|
| 145 |
+
- Can run `unittest <https://docs.pytest.org/en/stable/how-to/unittest.html>`_ (or trial)
|
| 146 |
+
test suites out of the box
|
| 147 |
+
|
| 148 |
+
- Python 3.8+ or PyPy3
|
| 149 |
+
|
| 150 |
+
- Rich plugin architecture, with over 1300+ `external plugins <https://docs.pytest.org/en/latest/reference/plugin_list.html>`_ and thriving community
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
Documentation
|
| 154 |
+
-------------
|
| 155 |
+
|
| 156 |
+
For full documentation, including installation, tutorials and PDF documents, please see https://docs.pytest.org/en/stable/.
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
Bugs/Requests
|
| 160 |
+
-------------
|
| 161 |
+
|
| 162 |
+
Please use the `GitHub issue tracker <https://github.com/pytest-dev/pytest/issues>`_ to submit bugs or request features.
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
Changelog
|
| 166 |
+
---------
|
| 167 |
+
|
| 168 |
+
Consult the `Changelog <https://docs.pytest.org/en/stable/changelog.html>`__ page for fixes and enhancements of each version.
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
Support pytest
|
| 172 |
+
--------------
|
| 173 |
+
|
| 174 |
+
`Open Collective`_ is an online funding platform for open and transparent communities.
|
| 175 |
+
It provides tools to raise money and share your finances in full transparency.
|
| 176 |
+
|
| 177 |
+
It is the platform of choice for individuals and companies that want to make one-time or
|
| 178 |
+
monthly donations directly to the project.
|
| 179 |
+
|
| 180 |
+
See more details in the `pytest collective`_.
|
| 181 |
+
|
| 182 |
+
.. _Open Collective: https://opencollective.com
|
| 183 |
+
.. _pytest collective: https://opencollective.com/pytest
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
pytest for enterprise
|
| 187 |
+
---------------------
|
| 188 |
+
|
| 189 |
+
Available as part of the Tidelift Subscription.
|
| 190 |
+
|
| 191 |
+
The maintainers of pytest and thousands of other packages are working with Tidelift to deliver commercial support and
|
| 192 |
+
maintenance for the open source dependencies you use to build your applications.
|
| 193 |
+
Save time, reduce risk, and improve code health, while paying the maintainers of the exact dependencies you use.
|
| 194 |
+
|
| 195 |
+
`Learn more. <https://tidelift.com/subscription/pkg/pypi-pytest?utm_source=pypi-pytest&utm_medium=referral&utm_campaign=enterprise&utm_term=repo>`_
|
| 196 |
+
|
| 197 |
+
Security
|
| 198 |
+
^^^^^^^^
|
| 199 |
+
|
| 200 |
+
pytest has never been associated with a security vulnerability, but in any case, to report a
|
| 201 |
+
security vulnerability please use the `Tidelift security contact <https://tidelift.com/security>`_.
|
| 202 |
+
Tidelift will coordinate the fix and disclosure.
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
License
|
| 206 |
+
-------
|
| 207 |
+
|
| 208 |
+
Copyright Holger Krekel and others, 2004.
|
| 209 |
+
|
| 210 |
+
Distributed under the terms of the `MIT`_ license, pytest is free and open source software.
|
| 211 |
+
|
| 212 |
+
.. _`MIT`: https://github.com/pytest-dev/pytest/blob/main/LICENSE
|
.cache/pip/http-v2/7/7/6/7/2/7767287c95ec4491394e4204f2ba3be9eb9e3ed9ca0ffd45d421b772.body
ADDED
|
Binary file (307 kB). View file
|
|
|
.cache/pip/http-v2/7/c/4/b/8/7c4b8a19f4f69494c22868b76649cd91120de17447e4ff71fb7a7f10.body
ADDED
|
Binary file (1.39 kB). View file
|
|
|
.cache/pip/http-v2/7/e/1/d/d/7e1dd8fd372b5a4d9dab3a30df124fb3e1f8789a9ab79f867640876a.body
ADDED
|
Binary file (65.4 kB). View file
|
|
|
.cache/pip/http-v2/a/6/6/7/4/a6674e44f8dbb270324765d1fb568b86858877aed299a2428f81e802
ADDED
|
Binary file (1.81 kB). View file
|
|
|
.cache/pip/http-v2/a/b/7/2/8/ab7286aff652f0ea3cc68322991122267ea675cbb86a9b1ccfe4ace3
ADDED
|
Binary file (1.19 kB). View file
|
|
|
.cache/pip/http-v2/a/d/e/c/9/adec97b9b98035179c2f2a0370fc49fcf626678705d2f38c1dcdafa7
ADDED
|
Binary file (1.16 kB). View file
|
|
|
.cache/pip/http-v2/b/6/8/7/d/b687d90e2a44328db9c9ecd9af0a9c577a4e68f9d239bbb73aebc319.body
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Metadata-Version: 2.1
|
| 2 |
+
Name: wheel
|
| 3 |
+
Version: 0.42.0
|
| 4 |
+
Summary: A built-package format for Python
|
| 5 |
+
Keywords: wheel,packaging
|
| 6 |
+
Author-email: Daniel Holth <[email protected]>
|
| 7 |
+
Maintainer-email: Alex Grönholm <[email protected]>
|
| 8 |
+
Requires-Python: >=3.7
|
| 9 |
+
Description-Content-Type: text/x-rst
|
| 10 |
+
Classifier: Development Status :: 5 - Production/Stable
|
| 11 |
+
Classifier: Intended Audience :: Developers
|
| 12 |
+
Classifier: Topic :: System :: Archiving :: Packaging
|
| 13 |
+
Classifier: License :: OSI Approved :: MIT License
|
| 14 |
+
Classifier: Programming Language :: Python
|
| 15 |
+
Classifier: Programming Language :: Python :: 3 :: Only
|
| 16 |
+
Classifier: Programming Language :: Python :: 3.7
|
| 17 |
+
Classifier: Programming Language :: Python :: 3.8
|
| 18 |
+
Classifier: Programming Language :: Python :: 3.9
|
| 19 |
+
Classifier: Programming Language :: Python :: 3.10
|
| 20 |
+
Classifier: Programming Language :: Python :: 3.11
|
| 21 |
+
Classifier: Programming Language :: Python :: 3.12
|
| 22 |
+
Requires-Dist: pytest >= 6.0.0 ; extra == "test"
|
| 23 |
+
Requires-Dist: setuptools >= 65 ; extra == "test"
|
| 24 |
+
Project-URL: Changelog, https://wheel.readthedocs.io/en/stable/news.html
|
| 25 |
+
Project-URL: Documentation, https://wheel.readthedocs.io/
|
| 26 |
+
Project-URL: Issue Tracker, https://github.com/pypa/wheel/issues
|
| 27 |
+
Project-URL: Source, https://github.com/pypa/wheel
|
| 28 |
+
Provides-Extra: test
|
| 29 |
+
|
| 30 |
+
wheel
|
| 31 |
+
=====
|
| 32 |
+
|
| 33 |
+
This library is the reference implementation of the Python wheel packaging
|
| 34 |
+
standard, as defined in `PEP 427`_.
|
| 35 |
+
|
| 36 |
+
It has two different roles:
|
| 37 |
+
|
| 38 |
+
#. A setuptools_ extension for building wheels that provides the
|
| 39 |
+
``bdist_wheel`` setuptools command
|
| 40 |
+
#. A command line tool for working with wheel files
|
| 41 |
+
|
| 42 |
+
It should be noted that wheel is **not** intended to be used as a library, and
|
| 43 |
+
as such there is no stable, public API.
|
| 44 |
+
|
| 45 |
+
.. _PEP 427: https://www.python.org/dev/peps/pep-0427/
|
| 46 |
+
.. _setuptools: https://pypi.org/project/setuptools/
|
| 47 |
+
|
| 48 |
+
Documentation
|
| 49 |
+
-------------
|
| 50 |
+
|
| 51 |
+
The documentation_ can be found on Read The Docs.
|
| 52 |
+
|
| 53 |
+
.. _documentation: https://wheel.readthedocs.io/
|
| 54 |
+
|
| 55 |
+
Code of Conduct
|
| 56 |
+
---------------
|
| 57 |
+
|
| 58 |
+
Everyone interacting in the wheel project's codebases, issue trackers, chat
|
| 59 |
+
rooms, and mailing lists is expected to follow the `PSF Code of Conduct`_.
|
| 60 |
+
|
| 61 |
+
.. _PSF Code of Conduct: https://github.com/pypa/.github/blob/main/CODE_OF_CONDUCT.md
|
| 62 |
+
|
.cache/pip/http-v2/b/8/b/f/4/b8bf4a44dbb1c5e59b2500975b68a4301d11f85878b612151a649c3d
ADDED
|
Binary file (1.82 kB). View file
|
|
|
.cache/pip/http-v2/b/f/c/a/5/bfca522eaf7404612287f82a4ec69fbc52a846f5a5757f91528163da
ADDED
|
Binary file (1.15 kB). View file
|
|
|
.cache/pip/http-v2/b/f/d/6/3/bfd6322b8f4c82d6b7ed54608512187e126478b3b0851b74973f4adc.body
ADDED
|
Binary file (299 kB). View file
|
|
|
.launchpadlib/api.launchpad.net/cache/api.launchpad.net,devel,-application,json,fc4e1e3a03117146fb1e9d492ab76690
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
status: 200
|
| 2 |
+
date: Mon, 05 Feb 2024 23:25:35 GMT
|
| 3 |
+
server: Apache/2.4.41 (Ubuntu)
|
| 4 |
+
content-location: index.json
|
| 5 |
+
vary: negotiate,accept,Accept-Encoding
|
| 6 |
+
tcn: choice
|
| 7 |
+
last-modified: Wed, 31 Jan 2024 08:46:52 GMT
|
| 8 |
+
etag: "8fa-61039eb973700-gzip"
|
| 9 |
+
accept-ranges: bytes
|
| 10 |
+
content-type: application/json; qs=0.9
|
| 11 |
+
x-cache: MISS from juju-98d295-prod-launchpad-30
|
| 12 |
+
x-cache-lookup: MISS from juju-98d295-prod-launchpad-30:3128
|
| 13 |
+
via: 1.1 juju-98d295-prod-launchpad-30 (squid/4.10)
|
| 14 |
+
content-length: 2298
|
| 15 |
+
-content-encoding: gzip
|
| 16 |
+
-varied-accept: application/json
|
| 17 |
+
-varied-accept-encoding: gzip, deflate
|
| 18 |
+
|
| 19 |
+
{"resource_type_link": "https://api.launchpad.net/devel/#service-root", "temporary_blobs_collection_link": "https://api.launchpad.net/devel/temporary-blobs", "countries_collection_link": "https://api.launchpad.net/devel/+countries", "languages_collection_link": "https://api.launchpad.net/devel/+languages", "questions_collection_link": "https://api.launchpad.net/devel/questions", "specifications_collection_link": "https://api.launchpad.net/devel/", "bug_trackers_collection_link": "https://api.launchpad.net/devel/bugs/bugtrackers", "cves_collection_link": "https://api.launchpad.net/devel/bugs/cve", "bugs_collection_link": "https://api.launchpad.net/devel/bugs", "builders_collection_link": "https://api.launchpad.net/devel/builders", "processors_collection_link": "https://api.launchpad.net/devel/+processors", "charm_bases_collection_link": "https://api.launchpad.net/devel/+charm-bases", "charm_recipes_collection_link": "https://api.launchpad.net/devel/+charm-recipes", "branches_collection_link": "https://api.launchpad.net/devel/branches", "git_repositories_collection_link": "https://api.launchpad.net/devel/+git", "snap_bases_collection_link": "https://api.launchpad.net/devel/+snap-bases", "snaps_collection_link": "https://api.launchpad.net/devel/+snaps", "snappy_serieses_collection_link": "https://api.launchpad.net/devel/+snappy-series", "archives_collection_link": "https://api.launchpad.net/devel/archives", "livefses_collection_link": "https://api.launchpad.net/devel/livefses", "packagesets_collection_link": "https://api.launchpad.net/devel/package-sets", "translation_groups_collection_link": "https://api.launchpad.net/devel/+groups", "translation_import_queue_entries_collection_link": "https://api.launchpad.net/devel/+imports", "distributions_collection_link": "https://api.launchpad.net/devel/distros", "people_collection_link": "https://api.launchpad.net/devel/people", "polls_collection_link": "https://api.launchpad.net/devel/+polls", "projects_collection_link": "https://api.launchpad.net/devel/projects", "project_groups_collection_link": "https://api.launchpad.net/devel/projectgroups", "services_link": "https://api.launchpad.net/devel/services", "pillars_link": "https://api.launchpad.net/devel/pillars", "me_link": "https://api.launchpad.net/devel/people/+me"}
|
.local/share/Trash/info/train_001.bin.trashinfo
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[Trash Info]
|
| 2 |
+
Path=/root/data/fineweb/train_001.bin
|
| 3 |
+
DeletionDate=2024-09-26T05:50:34
|
.local/share/Trash/info/train_003.bin.trashinfo
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[Trash Info]
|
| 2 |
+
Path=/root/data/fineweb/train_003.bin
|
| 3 |
+
DeletionDate=2024-09-26T05:50:34
|
.local/share/Trash/info/train_006.bin.trashinfo
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[Trash Info]
|
| 2 |
+
Path=/root/data/fineweb/train_006.bin
|
| 3 |
+
DeletionDate=2024-09-26T05:50:34
|
.local/share/Trash/info/train_007.bin.trashinfo
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[Trash Info]
|
| 2 |
+
Path=/root/data/fineweb/train_007.bin
|
| 3 |
+
DeletionDate=2024-09-26T05:50:34
|
.local/share/jupyter/nbextensions/skip-traceback/icon.png
ADDED
|
|
.local/share/jupyter/nbextensions/skip-traceback/skip-traceback.png
ADDED
|
.local/share/jupyter/nbextensions/snippets_menu/main.js
ADDED
|
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
define([
|
| 2 |
+
"require",
|
| 3 |
+
"jquery",
|
| 4 |
+
"base/js/namespace",
|
| 5 |
+
"./snippets_submenu_python",
|
| 6 |
+
"./snippets_submenu_markdown",
|
| 7 |
+
], function (requirejs, $, Jupyter, python, markdown) {
|
| 8 |
+
"use strict";
|
| 9 |
+
|
| 10 |
+
var mod_name = 'snippets_menu';
|
| 11 |
+
var mod_log_prefix = mod_name + '[' + mod_name + ']';
|
| 12 |
+
|
| 13 |
+
var python_menus = [
|
| 14 |
+
python.numpy,
|
| 15 |
+
python.scipy,
|
| 16 |
+
python.matplotlib,
|
| 17 |
+
python.sympy,
|
| 18 |
+
python.pandas,
|
| 19 |
+
python.astropy,
|
| 20 |
+
python.h5py,
|
| 21 |
+
python.numba,
|
| 22 |
+
python.python,
|
| 23 |
+
];
|
| 24 |
+
|
| 25 |
+
var default_menus = [
|
| 26 |
+
{
|
| 27 |
+
'name' : 'Snippets',
|
| 28 |
+
'sub-menu-direction' : 'left',
|
| 29 |
+
'sub-menu' : python_menus.concat([markdown]),
|
| 30 |
+
},
|
| 31 |
+
];
|
| 32 |
+
var options = {
|
| 33 |
+
sibling: undefined, // if undefined, set by cfg.sibling_selector
|
| 34 |
+
menus : [],
|
| 35 |
+
hooks: {
|
| 36 |
+
pre_config: undefined,
|
| 37 |
+
post_config: undefined,
|
| 38 |
+
}
|
| 39 |
+
};
|
| 40 |
+
|
| 41 |
+
var includable_submenu_keys = [
|
| 42 |
+
"numpy",
|
| 43 |
+
"scipy",
|
| 44 |
+
"matplotlib",
|
| 45 |
+
"sympy",
|
| 46 |
+
"pandas",
|
| 47 |
+
"astropy",
|
| 48 |
+
"h5py",
|
| 49 |
+
"numba",
|
| 50 |
+
"python",
|
| 51 |
+
"markdown",
|
| 52 |
+
];
|
| 53 |
+
// default parameters
|
| 54 |
+
var cfg = {
|
| 55 |
+
insert_as_new_cell: false,
|
| 56 |
+
insert_before_sibling: false,
|
| 57 |
+
include_custom_menu: false,
|
| 58 |
+
include_submenu: {}, // default set after this definition
|
| 59 |
+
sibling_selector: '#help_menu',
|
| 60 |
+
top_level_submenu_goes_left: true,
|
| 61 |
+
// The default has to be included here as well as config.yaml
|
| 62 |
+
// because the configurator will not store the default given
|
| 63 |
+
// in config.yaml unless it is changed. That means that this
|
| 64 |
+
// should be kept up-to-date with whatever goes in
|
| 65 |
+
// config.yaml.
|
| 66 |
+
custom_menu_content: JSON.stringify({
|
| 67 |
+
"name" : "My favorites",
|
| 68 |
+
"sub-menu" : [{
|
| 69 |
+
"name" : "Menu item text",
|
| 70 |
+
"snippet" : [
|
| 71 |
+
"import something",
|
| 72 |
+
"",
|
| 73 |
+
"new_command(3.14)",
|
| 74 |
+
"other_new_code_on_new_line('with a string!')",
|
| 75 |
+
"stringy(\"if you need them, escape double quotes with a single backslash\")",
|
| 76 |
+
"backslashy('This \\ appears as just one backslash in the output')",
|
| 77 |
+
"backslashy2('Here \\\\ are two backslashes')"
|
| 78 |
+
]}, {
|
| 79 |
+
"name" : "TeX can be written in menu labels $\\alpha_W e\\int_0 \\mu \\epsilon$",
|
| 80 |
+
"snippet" : [
|
| 81 |
+
"another_new_command(2.78)"
|
| 82 |
+
]
|
| 83 |
+
}
|
| 84 |
+
]
|
| 85 |
+
})
|
| 86 |
+
};
|
| 87 |
+
for (var ii=0; ii< includable_submenu_keys.length; ii++) {
|
| 88 |
+
cfg.include_submenu[includable_submenu_keys[ii]] = true;
|
| 89 |
+
}
|
| 90 |
+
|
| 91 |
+
function config_loaded_callback () {
|
| 92 |
+
if (options['pre_config_hook'] !== undefined) {
|
| 93 |
+
options['pre_config_hook']();
|
| 94 |
+
}
|
| 95 |
+
|
| 96 |
+
// true => deep
|
| 97 |
+
cfg = $.extend(true, cfg, Jupyter.notebook.config.data.snippets);
|
| 98 |
+
|
| 99 |
+
if (cfg.insert_as_new_cell) {
|
| 100 |
+
console.log(mod_log_prefix, "Insertions will insert new cell");
|
| 101 |
+
}
|
| 102 |
+
|
| 103 |
+
// If `options.menus` had elements added in custom.js, skip all of this and ignore all remaining options
|
| 104 |
+
if (options.menus.length > 0) {
|
| 105 |
+
console.log(mod_log_prefix, '`options.menus` was created in custom.js; skipping all other configuration.');
|
| 106 |
+
}
|
| 107 |
+
else {
|
| 108 |
+
options.menus = [
|
| 109 |
+
{
|
| 110 |
+
'name' : 'Snippets',
|
| 111 |
+
'sub-menu-direction' : cfg.top_level_submenu_goes_left ? 'left' : 'right',
|
| 112 |
+
'sub-menu' : [],
|
| 113 |
+
},
|
| 114 |
+
];
|
| 115 |
+
|
| 116 |
+
if (cfg.include_custom_menu) {
|
| 117 |
+
var custom_menu_content = JSON.parse(cfg.custom_menu_content);
|
| 118 |
+
console.log(mod_log_prefix,
|
| 119 |
+
"Inserting custom", custom_menu_content.name, "sub-menu");
|
| 120 |
+
options.menus[0]['sub-menu'].push(custom_menu_content);
|
| 121 |
+
}
|
| 122 |
+
|
| 123 |
+
for (var ii=0; ii < includable_submenu_keys.length; ii++) {
|
| 124 |
+
var key = includable_submenu_keys[ii];
|
| 125 |
+
if (cfg.include_submenu[key]) {
|
| 126 |
+
console.log(mod_log_prefix,
|
| 127 |
+
"Inserting default", key, "sub-menu");
|
| 128 |
+
options.menus[0]['sub-menu'].push(key === "markdown" ? markdown : python[key]);
|
| 129 |
+
}
|
| 130 |
+
}
|
| 131 |
+
}
|
| 132 |
+
|
| 133 |
+
if (options.hooks.post_config !== undefined) {
|
| 134 |
+
options.hooks.post_config();
|
| 135 |
+
}
|
| 136 |
+
|
| 137 |
+
// select correct sibling
|
| 138 |
+
if (options.sibling === undefined) {
|
| 139 |
+
options.sibling = $(cfg.sibling_selector).parent();
|
| 140 |
+
if (options.sibling.length < 1) {
|
| 141 |
+
options.sibling = $("#help_menu").parent();
|
| 142 |
+
}
|
| 143 |
+
}
|
| 144 |
+
}
|
| 145 |
+
|
| 146 |
+
function insert_snippet_code (snippet_code) {
|
| 147 |
+
if (cfg.insert_as_new_cell) {
|
| 148 |
+
var new_cell = Jupyter.notebook.insert_cell_above('code');
|
| 149 |
+
new_cell.set_text(snippet_code);
|
| 150 |
+
new_cell.focus_cell();
|
| 151 |
+
}
|
| 152 |
+
else {
|
| 153 |
+
var selected_cell = Jupyter.notebook.get_selected_cell();
|
| 154 |
+
Jupyter.notebook.edit_mode();
|
| 155 |
+
selected_cell.code_mirror.replaceSelection(snippet_code, 'around');
|
| 156 |
+
}
|
| 157 |
+
}
|
| 158 |
+
|
| 159 |
+
function callback_insert_snippet (evt) {
|
| 160 |
+
// this (or event.currentTarget, see below) always refers to the DOM
|
| 161 |
+
// element the listener was attached to - see
|
| 162 |
+
// http://stackoverflow.com/questions/12077859
|
| 163 |
+
insert_snippet_code($(evt.currentTarget).data('snippet-code'));
|
| 164 |
+
}
|
| 165 |
+
|
| 166 |
+
function build_menu_element (menu_item_spec, direction) {
|
| 167 |
+
// Create the menu item html element
|
| 168 |
+
var element = $('<li/>');
|
| 169 |
+
|
| 170 |
+
if (typeof menu_item_spec == 'string') {
|
| 171 |
+
if (menu_item_spec != '---') {
|
| 172 |
+
console.log(mod_log_prefix,
|
| 173 |
+
'Don\'t understand sub-menu string "' + menu_item_spec + '"');
|
| 174 |
+
return null;
|
| 175 |
+
}
|
| 176 |
+
return element.addClass('divider');
|
| 177 |
+
}
|
| 178 |
+
|
| 179 |
+
var a = $('<a/>')
|
| 180 |
+
.attr('href', '#')
|
| 181 |
+
.html(menu_item_spec.name)
|
| 182 |
+
.appendTo(element);
|
| 183 |
+
if (menu_item_spec.hasOwnProperty('snippet')) {
|
| 184 |
+
var snippet = menu_item_spec.snippet;
|
| 185 |
+
if (typeof snippet == 'string' || snippet instanceof String) {
|
| 186 |
+
snippet = [snippet];
|
| 187 |
+
}
|
| 188 |
+
a.attr({
|
| 189 |
+
'title' : "", // Do not remove this, even though it's empty!
|
| 190 |
+
'data-snippet-code' : snippet.join('\n'),
|
| 191 |
+
})
|
| 192 |
+
.on('click', callback_insert_snippet)
|
| 193 |
+
.addClass('snippet');
|
| 194 |
+
}
|
| 195 |
+
else if (menu_item_spec.hasOwnProperty('internal-link')) {
|
| 196 |
+
a.attr('href', menu_item_spec['internal-link']);
|
| 197 |
+
}
|
| 198 |
+
else if (menu_item_spec.hasOwnProperty('external-link')) {
|
| 199 |
+
a.empty();
|
| 200 |
+
a.attr({
|
| 201 |
+
'target' : '_blank',
|
| 202 |
+
'title' : 'Opens in a new window',
|
| 203 |
+
'href' : menu_item_spec['external-link'],
|
| 204 |
+
});
|
| 205 |
+
$('<i class="fa fa-external-link menu-icon pull-right"/>').appendTo(a);
|
| 206 |
+
$('<span/>').html(menu_item_spec.name).appendTo(a);
|
| 207 |
+
}
|
| 208 |
+
|
| 209 |
+
if (menu_item_spec.hasOwnProperty('sub-menu')) {
|
| 210 |
+
element
|
| 211 |
+
.addClass('dropdown-submenu')
|
| 212 |
+
.toggleClass('dropdown-submenu-left', direction === 'left');
|
| 213 |
+
var sub_element = $('<ul class="dropdown-menu"/>')
|
| 214 |
+
.toggleClass('dropdown-menu-compact', menu_item_spec.overlay === true) // For space-saving menus
|
| 215 |
+
.appendTo(element);
|
| 216 |
+
|
| 217 |
+
var new_direction = (menu_item_spec['sub-menu-direction'] === 'left') ? 'left' : 'right';
|
| 218 |
+
for (var j=0; j<menu_item_spec['sub-menu'].length; ++j) {
|
| 219 |
+
var sub_menu_item_spec = build_menu_element(menu_item_spec['sub-menu'][j], new_direction);
|
| 220 |
+
if(sub_menu_item_spec !== null) {
|
| 221 |
+
sub_menu_item_spec.appendTo(sub_element);
|
| 222 |
+
}
|
| 223 |
+
}
|
| 224 |
+
}
|
| 225 |
+
|
| 226 |
+
return element;
|
| 227 |
+
}
|
| 228 |
+
|
| 229 |
+
function menu_setup (menu_item_specs, sibling, insert_before_sibling) {
|
| 230 |
+
for (var i=0; i<menu_item_specs.length; ++i) {
|
| 231 |
+
var menu_item_spec;
|
| 232 |
+
if (insert_before_sibling) {
|
| 233 |
+
menu_item_spec = menu_item_specs[i];
|
| 234 |
+
} else {
|
| 235 |
+
menu_item_spec = menu_item_specs[menu_item_specs.length-1-i];
|
| 236 |
+
}
|
| 237 |
+
var direction = (menu_item_spec['menu-direction'] == 'left') ? 'left' : 'right';
|
| 238 |
+
var menu_element = build_menu_element(menu_item_spec, direction);
|
| 239 |
+
// We need special properties if this item is in the navbar
|
| 240 |
+
if ($(sibling).parent().is('ul.nav.navbar-nav')) {
|
| 241 |
+
menu_element
|
| 242 |
+
.addClass('dropdown')
|
| 243 |
+
.removeClass('dropdown-submenu dropdown-submenu-left');
|
| 244 |
+
menu_element.children('a')
|
| 245 |
+
.addClass('dropdown-toggle')
|
| 246 |
+
.attr({
|
| 247 |
+
'data-toggle' : 'dropdown',
|
| 248 |
+
'aria-expanded' : 'false'
|
| 249 |
+
});
|
| 250 |
+
}
|
| 251 |
+
|
| 252 |
+
// Insert the menu element into DOM
|
| 253 |
+
menu_element[insert_before_sibling ? 'insertBefore': 'insertAfter'](sibling);
|
| 254 |
+
|
| 255 |
+
// Make sure MathJax will typeset this menu
|
| 256 |
+
window.MathJax.Hub.Queue(["Typeset", window.MathJax.Hub, menu_element[0]]);
|
| 257 |
+
}
|
| 258 |
+
}
|
| 259 |
+
|
| 260 |
+
function load_ipython_extension () {
|
| 261 |
+
// Add our css to the notebook's head
|
| 262 |
+
$('<link/>', {
|
| 263 |
+
rel: 'stylesheet',
|
| 264 |
+
type:'text/css',
|
| 265 |
+
href: requirejs.toUrl('./snippets_menu.css')
|
| 266 |
+
}).appendTo('head');
|
| 267 |
+
|
| 268 |
+
// Arrange the menus as given by the configuration
|
| 269 |
+
Jupyter.notebook.config.loaded.then(
|
| 270 |
+
config_loaded_callback
|
| 271 |
+
).then(function () {
|
| 272 |
+
// Parse and insert the menu items
|
| 273 |
+
menu_setup(options.menus, options.sibling, cfg.insert_before_sibling);
|
| 274 |
+
});
|
| 275 |
+
}
|
| 276 |
+
|
| 277 |
+
return {
|
| 278 |
+
// Handy functions
|
| 279 |
+
load_ipython_extension : load_ipython_extension,
|
| 280 |
+
menu_setup : menu_setup,
|
| 281 |
+
|
| 282 |
+
// Default menus
|
| 283 |
+
python : python,
|
| 284 |
+
python_menus : python_menus,
|
| 285 |
+
markdown : markdown,
|
| 286 |
+
default_menus : default_menus,
|
| 287 |
+
|
| 288 |
+
// Items that could be useful for customization
|
| 289 |
+
options : options,
|
| 290 |
+
};
|
| 291 |
+
|
| 292 |
+
});
|
.local/share/jupyter/nbextensions/snippets_menu/screenshot3.png
ADDED
|
.local/share/jupyter/nbextensions/snippets_menu/snippets_submenu_python.js
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
define([
|
| 2 |
+
"require",
|
| 3 |
+
"./snippets_submenus_python/numpy",
|
| 4 |
+
"./snippets_submenus_python/scipy",
|
| 5 |
+
"./snippets_submenus_python/matplotlib",
|
| 6 |
+
"./snippets_submenus_python/sympy",
|
| 7 |
+
"./snippets_submenus_python/pandas",
|
| 8 |
+
"./snippets_submenus_python/astropy",
|
| 9 |
+
"./snippets_submenus_python/h5py",
|
| 10 |
+
"./snippets_submenus_python/numba",
|
| 11 |
+
"./snippets_submenus_python/python",
|
| 12 |
+
], function (requirejs, numpy, scipy, matplotlib, sympy, pandas, astropy, h5py, numba, python) {
|
| 13 |
+
return {
|
| 14 |
+
numpy:numpy,
|
| 15 |
+
scipy:scipy,
|
| 16 |
+
matplotlib:matplotlib,
|
| 17 |
+
sympy:sympy,
|
| 18 |
+
pandas:pandas,
|
| 19 |
+
astropy:astropy,
|
| 20 |
+
h5py:h5py,
|
| 21 |
+
numba:numba,
|
| 22 |
+
python:python,
|
| 23 |
+
};
|
| 24 |
+
});
|
.local/share/jupyter/nbextensions/snippets_menu/snippets_submenus_python/scipy.js
ADDED
|
@@ -0,0 +1,620 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
define([
|
| 2 |
+
"require",
|
| 3 |
+
"./scipy_constants",
|
| 4 |
+
"./scipy_special",
|
| 5 |
+
], function (requirejs, scipy_constants, scipy_special) {
|
| 6 |
+
return {
|
| 7 |
+
'name' : 'SciPy',
|
| 8 |
+
'sub-menu' : [
|
| 9 |
+
{
|
| 10 |
+
'name' : 'Setup',
|
| 11 |
+
'snippet' : [
|
| 12 |
+
'from __future__ import print_function, division',
|
| 13 |
+
'import numpy as np',
|
| 14 |
+
'import scipy as sp',
|
| 15 |
+
],
|
| 16 |
+
},
|
| 17 |
+
|
| 18 |
+
{
|
| 19 |
+
'name' : 'Documentation',
|
| 20 |
+
'external-link' : 'http://docs.scipy.org/doc/scipy/reference/',
|
| 21 |
+
},
|
| 22 |
+
|
| 23 |
+
'---',
|
| 24 |
+
|
| 25 |
+
// {
|
| 26 |
+
// 'name' : 'Clustering algorithms',
|
| 27 |
+
// 'sub-menu' : [
|
| 28 |
+
// {
|
| 29 |
+
// 'name' : 'Setup',
|
| 30 |
+
// 'snippet' : ['from scipy import cluster',],
|
| 31 |
+
// },
|
| 32 |
+
// ],
|
| 33 |
+
// },
|
| 34 |
+
|
| 35 |
+
scipy_constants,
|
| 36 |
+
|
| 37 |
+
{
|
| 38 |
+
'name' : 'Fast Fourier Transform routines',
|
| 39 |
+
'sub-menu' : [
|
| 40 |
+
{
|
| 41 |
+
'name' : 'Setup',
|
| 42 |
+
'snippet' : ['from scipy import fftpack',],
|
| 43 |
+
},
|
| 44 |
+
'---',
|
| 45 |
+
{
|
| 46 |
+
'name' : 'Docs',
|
| 47 |
+
'external-link' : 'http://docs.scipy.org/doc/scipy-0.15.1/reference/fftpack.html'
|
| 48 |
+
},
|
| 49 |
+
],
|
| 50 |
+
},
|
| 51 |
+
|
| 52 |
+
{
|
| 53 |
+
'name' : 'Integration and ODE solvers',
|
| 54 |
+
'sub-menu' : [
|
| 55 |
+
{
|
| 56 |
+
'name' : 'Setup',
|
| 57 |
+
'snippet' : ['from scipy import integrate',],
|
| 58 |
+
},
|
| 59 |
+
'---',
|
| 60 |
+
{
|
| 61 |
+
'name' : 'Integrate given function object',
|
| 62 |
+
'sub-menu' : [
|
| 63 |
+
{
|
| 64 |
+
'name' : 'General-purpose integration',
|
| 65 |
+
'snippet' : [
|
| 66 |
+
'from scipy import integrate',
|
| 67 |
+
'def f(x, a, b):',
|
| 68 |
+
' return a * x + b',
|
| 69 |
+
'integral,error = integrate.quad(f, 0, 4.5, args=(2,1)) # integrates 2*x+1',
|
| 70 |
+
'print(integral, error)',
|
| 71 |
+
],
|
| 72 |
+
},
|
| 73 |
+
{
|
| 74 |
+
'name' : 'General purpose double integration',
|
| 75 |
+
'snippet' : [
|
| 76 |
+
'from scipy import integrate',
|
| 77 |
+
'def integrand(y, x):',
|
| 78 |
+
' return x * y**2',
|
| 79 |
+
'x_lower_lim, x_upper_lim = 0.0, 0.5',
|
| 80 |
+
'y_lower_lim, y_upper_lim = lambda x:0.0, lambda x:1.0-2.0*x',
|
| 81 |
+
'# int_{x=0}^{0.5} int_{y=0}^{1-2x} x y dx dy',
|
| 82 |
+
'integral,error = integrate.dblquad(integrand,',
|
| 83 |
+
' x_lower_lim, x_upper_lim,',
|
| 84 |
+
' y_lower_lim, y_upper_lim)',
|
| 85 |
+
'print(integral, error)',
|
| 86 |
+
],
|
| 87 |
+
},
|
| 88 |
+
{
|
| 89 |
+
'name' : 'General purpose triple integration',
|
| 90 |
+
'snippet' : [
|
| 91 |
+
'from scipy import integrate',
|
| 92 |
+
'def integrand(z, y, x):',
|
| 93 |
+
' return x * y**2 + z',
|
| 94 |
+
'x_lower_lim, x_upper_lim = 0.0, 0.5',
|
| 95 |
+
'y_lower_lim, y_upper_lim = lambda x:0.0, lambda x:1.0-2.0*x',
|
| 96 |
+
'z_lower_lim, z_upper_lim = lambda x,y:-1.0, lambda x,y:1.0+2.0*x-y',
|
| 97 |
+
'# int_{x=0}^{0.5} int_{y=0}^{1-2x} int_{z=-1}^{1+2x-y} (x y**2 + z) dz dy dx',
|
| 98 |
+
'integral,error = integrate.tplquad(integrand,',
|
| 99 |
+
' x_lower_lim, x_upper_lim,',
|
| 100 |
+
' y_lower_lim, y_upper_lim,',
|
| 101 |
+
' z_lower_lim, z_upper_lim)',
|
| 102 |
+
'print(integral, error)',
|
| 103 |
+
],
|
| 104 |
+
},
|
| 105 |
+
{
|
| 106 |
+
'name' : 'General purpose n-fold integration',
|
| 107 |
+
'snippet' : [
|
| 108 |
+
'from scipy import integrate',
|
| 109 |
+
'def integrand(x0, x1, x2):',
|
| 110 |
+
' return x2 * x1**2 + x0',
|
| 111 |
+
'x2_lim = (0.0, 0.5)',
|
| 112 |
+
'x1_lim = lambda x2:(0.0, 1.0-2.0*x2)',
|
| 113 |
+
'x0_lim = lambda x1,x2:(-1.0, 1.0+2.0*x2-x1)',
|
| 114 |
+
'# int_{x2=0}^{0.5} int_{x1=0}^{1-2x2} int_{x0=-1}^{1+2x2-x1} (x2 x1**2 + x0) dx0 dx1 dx2',
|
| 115 |
+
'integral,error = integrate.nquad(integrand, [x0_lim, x1_lim, x2_lim])',
|
| 116 |
+
'print(integral, error)',
|
| 117 |
+
],
|
| 118 |
+
},
|
| 119 |
+
{
|
| 120 |
+
'name' : 'Integrate func(x) using Gaussian quadrature of order $n$',
|
| 121 |
+
'snippet' : [
|
| 122 |
+
'gaussian = lambda x: 1/np.sqrt(np.pi) * np.exp(-x**2)',
|
| 123 |
+
'a,b = 0,1 # limits of integration',
|
| 124 |
+
'result,err = integrate.fixed_quad(gaussian, a, b, n=5)',
|
| 125 |
+
],
|
| 126 |
+
},
|
| 127 |
+
{
|
| 128 |
+
'name' : 'Integrate with given tolerance using Gaussian quadrature',
|
| 129 |
+
'snippet' : [
|
| 130 |
+
'gaussian = lambda x: 1/np.sqrt(np.pi) * np.exp(-x**2)',
|
| 131 |
+
'a,b = 0,1 # limits of integration',
|
| 132 |
+
'result,err = integrate.quadrature(gaussian, a, b, tol=1e-8, rtol=1e-8)',
|
| 133 |
+
],
|
| 134 |
+
},
|
| 135 |
+
{
|
| 136 |
+
'name' : 'Integrate using Romberg integration',
|
| 137 |
+
'snippet' : [
|
| 138 |
+
'gaussian = lambda x: 1/np.sqrt(np.pi) * np.exp(-x**2)',
|
| 139 |
+
'a,b = 0,1 # limits of integration',
|
| 140 |
+
'result = integrate.romberg(gaussian, a, b, tol=1e-8, rtol=1e-8)',
|
| 141 |
+
],
|
| 142 |
+
},
|
| 143 |
+
],
|
| 144 |
+
},
|
| 145 |
+
{
|
| 146 |
+
'name' : 'Integrate given fixed samples',
|
| 147 |
+
'sub-menu' : [
|
| 148 |
+
{
|
| 149 |
+
'name' : 'Trapezoidal rule to compute integral from samples',
|
| 150 |
+
'snippet' : [
|
| 151 |
+
'x = np.linspace(1, 5, num=100)',
|
| 152 |
+
'y = 3*x**2 + 1',
|
| 153 |
+
'integrate.trapz(y, x) # Exact value is 128',
|
| 154 |
+
],
|
| 155 |
+
},
|
| 156 |
+
{
|
| 157 |
+
'name' : 'Trapezoidal rule to cumulatively compute integral from samples',
|
| 158 |
+
'snippet' : [
|
| 159 |
+
'x = np.linspace(1, 5, num=100)',
|
| 160 |
+
'y = 3*x**2 + 1',
|
| 161 |
+
'integrate.cumtrapz(y, x) # Should range from ~0 to ~128',
|
| 162 |
+
],
|
| 163 |
+
},
|
| 164 |
+
{
|
| 165 |
+
'name' : "Simpson's rule to compute integral from samples",
|
| 166 |
+
'snippet' : [
|
| 167 |
+
'x = np.linspace(1, 5, num=100)',
|
| 168 |
+
'y = 3*x**2 + 1',
|
| 169 |
+
'integrate.simps(y, x) # Exact value is 128',
|
| 170 |
+
],
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
'name' : 'Romberg Integration to compute integral from $2^k + 1$ evenly spaced samples',
|
| 174 |
+
'snippet' : [
|
| 175 |
+
'x = np.linspace(1, 5, num=2**7+1)',
|
| 176 |
+
'y = 3*x**2 + 1',
|
| 177 |
+
'integrate.romb(y, x) # Exact value is 128',
|
| 178 |
+
],
|
| 179 |
+
},
|
| 180 |
+
],
|
| 181 |
+
},
|
| 182 |
+
{
|
| 183 |
+
'name' : 'Numerically integrate ODE systems',
|
| 184 |
+
'sub-menu' : [
|
| 185 |
+
{
|
| 186 |
+
'name' : 'General integration of ordinary differential equations',
|
| 187 |
+
'snippet' : [
|
| 188 |
+
'from scipy.special import gamma, airy',
|
| 189 |
+
'def func(y, t):',
|
| 190 |
+
' return [t*y[1], y[0]]',
|
| 191 |
+
'x = np.arange(0, 4.0, 0.01)',
|
| 192 |
+
'y_0 = [-1.0 / 3**(1.0/3.0) / gamma(1.0/3.0), 1.0 / 3**(2.0/3.0) / gamma(2.0/3.0)]',
|
| 193 |
+
'Ai, Aip, Bi, Bip = airy(x)',
|
| 194 |
+
'y = odeint(func, y_0, x, rtol=1e-12, atol=1e-12) # Exact answer: (Aip, Ai)',
|
| 195 |
+
],
|
| 196 |
+
},
|
| 197 |
+
{
|
| 198 |
+
'name' : 'General integration of ordinary differential equations with known gradient',
|
| 199 |
+
'snippet' : [
|
| 200 |
+
'from scipy.special import gamma, airy',
|
| 201 |
+
'def func(y, t):',
|
| 202 |
+
' return [t*y[1], y[0]]',
|
| 203 |
+
'def gradient(y, t):',
|
| 204 |
+
' return [[0,t], [1,0]]',
|
| 205 |
+
'x = np.arange(0, 4.0, 0.01)',
|
| 206 |
+
'y_0 = [-1.0 / 3**(1.0/3.0) / gamma(1.0/3.0), 1.0 / 3**(2.0/3.0) / gamma(2.0/3.0)]',
|
| 207 |
+
'Ai, Aip, Bi, Bip = airy(x)',
|
| 208 |
+
'y = odeint(func, y_0, x, rtol=1e-12, atol=1e-12, Dfun=gradient) # Exact answer: (Aip, Ai)',
|
| 209 |
+
],
|
| 210 |
+
},
|
| 211 |
+
{
|
| 212 |
+
'name' : 'Integrate ODE using VODE and ZVODE routines',
|
| 213 |
+
'snippet' : [
|
| 214 |
+
"def f(t, y, arg1):",
|
| 215 |
+
" return [1j*arg1*y[0] + y[1], -arg1*y[1]**2]",
|
| 216 |
+
"def jac(t, y, arg1):",
|
| 217 |
+
" return [[1j*arg1, 1], [0, -arg1*2*y[1]]]",
|
| 218 |
+
"y0 = [1.0j, 2.0]",
|
| 219 |
+
"t0, t1, dt = 0.0, 10.0, 1.0",
|
| 220 |
+
"r = integrate.ode(f, jac).set_integrator('zvode', method='bdf')",
|
| 221 |
+
"r.set_initial_value(y0, t0)",
|
| 222 |
+
"r.set_f_params(2.0)",
|
| 223 |
+
"r.set_jac_params(2.0)",
|
| 224 |
+
"while r.successful() and r.t < t1:",
|
| 225 |
+
" r.integrate(r.t+dt)",
|
| 226 |
+
" print('{0}: {1}'.format(r.t, r.y))",
|
| 227 |
+
],
|
| 228 |
+
},
|
| 229 |
+
// {
|
| 230 |
+
// 'name' : 'Integrate complex ODE using VODE and ZVODE routines',
|
| 231 |
+
// 'snippet' : [
|
| 232 |
+
// 'integrate.complex_ode',
|
| 233 |
+
// ],
|
| 234 |
+
// },
|
| 235 |
+
],
|
| 236 |
+
},
|
| 237 |
+
],
|
| 238 |
+
},
|
| 239 |
+
|
| 240 |
+
{
|
| 241 |
+
'name' : 'Interpolation and smoothing splines',
|
| 242 |
+
'sub-menu' : [
|
| 243 |
+
{
|
| 244 |
+
'name' : 'Setup',
|
| 245 |
+
'snippet' : ['from scipy import interpolate',],
|
| 246 |
+
},
|
| 247 |
+
'---',
|
| 248 |
+
{
|
| 249 |
+
'name' : 'interp1d',
|
| 250 |
+
'snippet' : [
|
| 251 |
+
'# NOTE: `interp1d` is very slow; prefer `InterpolatedUnivariateSpline`',
|
| 252 |
+
'x = np.linspace(0, 10, 10)',
|
| 253 |
+
'y = np.cos(-x**2/8.0)',
|
| 254 |
+
"f = interpolate.interp1d(x, y, kind='cubic')",
|
| 255 |
+
'X = np.linspace(0, 10, 100)',
|
| 256 |
+
'Y = f(X)',
|
| 257 |
+
],
|
| 258 |
+
},
|
| 259 |
+
{
|
| 260 |
+
'name' : 'splrep / splrev',
|
| 261 |
+
'snippet' : [
|
| 262 |
+
'x = np.arange(0, 2*np.pi+np.pi/4, 2*np.pi/8)',
|
| 263 |
+
'y = np.sin(x)',
|
| 264 |
+
'tck = interpolate.splrep(x, y, s=0)',
|
| 265 |
+
'xnew = np.arange(0,2*np.pi,np.pi/50)',
|
| 266 |
+
'ynew = interpolate.splev(xnew, tck, der=0)',
|
| 267 |
+
],
|
| 268 |
+
},
|
| 269 |
+
{
|
| 270 |
+
'name' : 'InterpolatedUnivariateSpline',
|
| 271 |
+
'snippet' : [
|
| 272 |
+
'x = np.arange(0, 2*np.pi+np.pi/4, 2*np.pi/8)',
|
| 273 |
+
'y = np.sin(x)',
|
| 274 |
+
's = interpolate.InterpolatedUnivariateSpline(x, y)',
|
| 275 |
+
'xnew = np.arange(0, 2*np.pi, np.pi/50)',
|
| 276 |
+
'ynew = s(xnew)',
|
| 277 |
+
],
|
| 278 |
+
},
|
| 279 |
+
{
|
| 280 |
+
'name' : 'Multivariate interpolation',
|
| 281 |
+
'sub-menu' : [
|
| 282 |
+
|
| 283 |
+
],
|
| 284 |
+
},
|
| 285 |
+
{
|
| 286 |
+
'name' : '2-D Splines',
|
| 287 |
+
'sub-menu' : [
|
| 288 |
+
|
| 289 |
+
],
|
| 290 |
+
},
|
| 291 |
+
{
|
| 292 |
+
'name' : 'Radial basis functions',
|
| 293 |
+
'sub-menu' : [
|
| 294 |
+
|
| 295 |
+
],
|
| 296 |
+
},
|
| 297 |
+
],
|
| 298 |
+
},
|
| 299 |
+
|
| 300 |
+
// {
|
| 301 |
+
// 'name' : 'Input and Output',
|
| 302 |
+
// 'sub-menu' : [
|
| 303 |
+
// {
|
| 304 |
+
// 'name' : 'Setup',
|
| 305 |
+
// 'snippet' : ['from scipy import io',],
|
| 306 |
+
// },
|
| 307 |
+
// '---',
|
| 308 |
+
// ],
|
| 309 |
+
// },
|
| 310 |
+
|
| 311 |
+
{
|
| 312 |
+
'name' : 'Linear algebra',
|
| 313 |
+
'sub-menu' : [
|
| 314 |
+
{
|
| 315 |
+
'name' : 'Setup',
|
| 316 |
+
'snippet' : ['from scipy import linalg',],
|
| 317 |
+
},
|
| 318 |
+
'---',
|
| 319 |
+
{
|
| 320 |
+
'name' : 'Docs',
|
| 321 |
+
'external-link' : 'http://docs.scipy.org/doc/scipy-0.15.1/reference/linalg.html'
|
| 322 |
+
},
|
| 323 |
+
],
|
| 324 |
+
},
|
| 325 |
+
|
| 326 |
+
// {
|
| 327 |
+
// 'name' : 'Maximum entropy methods',
|
| 328 |
+
// 'sub-menu' : [
|
| 329 |
+
// {
|
| 330 |
+
// 'name' : 'Setup',
|
| 331 |
+
// 'snippet' : ['from scipy import maxentropy',],
|
| 332 |
+
// },
|
| 333 |
+
// '---',
|
| 334 |
+
// ],
|
| 335 |
+
// },
|
| 336 |
+
|
| 337 |
+
// {
|
| 338 |
+
// 'name' : 'N-dimensional image processing',
|
| 339 |
+
// 'sub-menu' : [
|
| 340 |
+
// {
|
| 341 |
+
// 'name' : 'Setup',
|
| 342 |
+
// 'snippet' : ['from scipy import ndimage',],
|
| 343 |
+
// },
|
| 344 |
+
// '---',
|
| 345 |
+
// ],
|
| 346 |
+
// },
|
| 347 |
+
|
| 348 |
+
// {
|
| 349 |
+
// 'name' : 'Orthogonal distance regression',
|
| 350 |
+
// 'sub-menu' : [
|
| 351 |
+
// {
|
| 352 |
+
// 'name' : 'Setup',
|
| 353 |
+
// 'snippet' : ['from scipy import odr',],
|
| 354 |
+
// },
|
| 355 |
+
// '---',
|
| 356 |
+
// ],
|
| 357 |
+
// },
|
| 358 |
+
|
| 359 |
+
{
|
| 360 |
+
'name' : 'Optimization and root-finding routines',
|
| 361 |
+
'sub-menu' : [
|
| 362 |
+
{
|
| 363 |
+
'name' : 'Setup',
|
| 364 |
+
'snippet' : [
|
| 365 |
+
'from scipy import optimize',
|
| 366 |
+
],
|
| 367 |
+
},
|
| 368 |
+
'---',
|
| 369 |
+
{
|
| 370 |
+
'name' : 'Scalar function minimization',
|
| 371 |
+
'sub-menu' : [
|
| 372 |
+
{
|
| 373 |
+
'name' : 'Unconstrained minimization',
|
| 374 |
+
'snippet' : [
|
| 375 |
+
'f = lambda x: (x - 2) * (x + 1)**2',
|
| 376 |
+
"res = optimize.minimize_scalar(f, method='brent')",
|
| 377 |
+
'print(res.x)',
|
| 378 |
+
],
|
| 379 |
+
},
|
| 380 |
+
{
|
| 381 |
+
'name' : 'Bounded minimization',
|
| 382 |
+
'snippet' : [
|
| 383 |
+
'from scipy.special import j1 # Test function',
|
| 384 |
+
"res = optimize.minimize_scalar(j1, bounds=(4, 7), method='bounded')",
|
| 385 |
+
'print(res.x)',
|
| 386 |
+
],
|
| 387 |
+
},
|
| 388 |
+
],
|
| 389 |
+
},
|
| 390 |
+
{
|
| 391 |
+
'name' : 'General-purpose optimization',
|
| 392 |
+
'sub-menu' : [
|
| 393 |
+
{
|
| 394 |
+
'name' : 'Nelder-Mead Simplex algorithm',
|
| 395 |
+
'snippet' : [
|
| 396 |
+
'def rosen(x):',
|
| 397 |
+
' """The Rosenbrock function"""',
|
| 398 |
+
' return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)',
|
| 399 |
+
'x0 = np.array([1.3, 0.7, 0.8, 1.9, 1.2])',
|
| 400 |
+
"res = optimize.minimize(rosen, x0, method='nelder-mead',",
|
| 401 |
+
" options={'xtol': 1e-8, 'disp': True})",
|
| 402 |
+
'print(res.x)',],
|
| 403 |
+
},
|
| 404 |
+
{
|
| 405 |
+
'name' : 'Broyden-Fletcher-Goldfarb-Shanno (BFGS), analytical derivative',
|
| 406 |
+
'snippet' : [
|
| 407 |
+
'def rosen(x):',
|
| 408 |
+
' """The Rosenbrock function"""',
|
| 409 |
+
' return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)',
|
| 410 |
+
'def rosen_der(x):',
|
| 411 |
+
' """Derivative of the Rosenbrock function"""',
|
| 412 |
+
' xm = x[1:-1]',
|
| 413 |
+
' xm_m1 = x[:-2]',
|
| 414 |
+
' xm_p1 = x[2:]',
|
| 415 |
+
' der = np.zeros_like(x)',
|
| 416 |
+
' der[1:-1] = 200*(xm-xm_m1**2) - 400*(xm_p1 - xm**2)*xm - 2*(1-xm)',
|
| 417 |
+
' der[0] = -400*x[0]*(x[1]-x[0]**2) - 2*(1-x[0])',
|
| 418 |
+
' der[-1] = 200*(x[-1]-x[-2]**2)',
|
| 419 |
+
' return der',
|
| 420 |
+
'x0 = np.array([1.3, 0.7, 0.8, 1.9, 1.2])',
|
| 421 |
+
"res = optimize.minimize(rosen, x0, method='BFGS', jac=rosen_der, options={'disp': True})",
|
| 422 |
+
'print(res.x)',],
|
| 423 |
+
},
|
| 424 |
+
{
|
| 425 |
+
'name' : 'Broyden-Fletcher-Goldfarb-Shanno (BFGS), finite-difference derivative',
|
| 426 |
+
'snippet' : [
|
| 427 |
+
'def rosen(x):',
|
| 428 |
+
' """The Rosenbrock function"""',
|
| 429 |
+
' return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)',
|
| 430 |
+
'x0 = np.array([1.3, 0.7, 0.8, 1.9, 1.2])',
|
| 431 |
+
"res = optimize.minimize(rosen, x0, method='BFGS', options={'disp': True})",
|
| 432 |
+
'print(res.x)',],
|
| 433 |
+
},
|
| 434 |
+
{
|
| 435 |
+
'name' : 'Newton-Conjugate-Gradient, full Hessian',
|
| 436 |
+
'snippet' : [
|
| 437 |
+
'def rosen(x):',
|
| 438 |
+
' """The Rosenbrock function"""',
|
| 439 |
+
' return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)',
|
| 440 |
+
'def rosen_der(x):',
|
| 441 |
+
' """Derivative of the Rosenbrock function"""',
|
| 442 |
+
' xm = x[1:-1]',
|
| 443 |
+
' xm_m1 = x[:-2]',
|
| 444 |
+
' xm_p1 = x[2:]',
|
| 445 |
+
' der = np.zeros_like(x)',
|
| 446 |
+
' der[1:-1] = 200*(xm-xm_m1**2) - 400*(xm_p1 - xm**2)*xm - 2*(1-xm)',
|
| 447 |
+
' der[0] = -400*x[0]*(x[1]-x[0]**2) - 2*(1-x[0])',
|
| 448 |
+
' der[-1] = 200*(x[-1]-x[-2]**2)',
|
| 449 |
+
' return der',
|
| 450 |
+
'def rosen_hess(x):',
|
| 451 |
+
' x = np.asarray(x)',
|
| 452 |
+
' H = np.diag(-400*x[:-1],1) - np.diag(400*x[:-1],-1)',
|
| 453 |
+
' diagonal = np.zeros_like(x)',
|
| 454 |
+
' diagonal[0] = 1200*x[0]-400*x[1]+2',
|
| 455 |
+
' diagonal[-1] = 200',
|
| 456 |
+
' diagonal[1:-1] = 202 + 1200*x[1:-1]**2 - 400*x[2:]',
|
| 457 |
+
' H = H + np.diag(diagonal)',
|
| 458 |
+
' return H',
|
| 459 |
+
'x0 = np.array([1.3, 0.7, 0.8, 1.9, 1.2])',
|
| 460 |
+
"res = optimize.minimize(rosen, x0, method='Newton-CG', jac=rosen_der, hess=rosen_hess,",
|
| 461 |
+
" options={'xtol': 1e-8, 'disp': True})",
|
| 462 |
+
'print(res.x)'],
|
| 463 |
+
},
|
| 464 |
+
{
|
| 465 |
+
'name' : 'Newton-Conjugate-Gradient, Hessian product',
|
| 466 |
+
'snippet' : [
|
| 467 |
+
'def rosen(x):',
|
| 468 |
+
' """The Rosenbrock function"""',
|
| 469 |
+
' return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)',
|
| 470 |
+
'def rosen_der(x):',
|
| 471 |
+
' """Derivative of the Rosenbrock function"""',
|
| 472 |
+
' xm = x[1:-1]',
|
| 473 |
+
' xm_m1 = x[:-2]',
|
| 474 |
+
' xm_p1 = x[2:]',
|
| 475 |
+
' der = np.zeros_like(x)',
|
| 476 |
+
' der[1:-1] = 200*(xm-xm_m1**2) - 400*(xm_p1 - xm**2)*xm - 2*(1-xm)',
|
| 477 |
+
' der[0] = -400*x[0]*(x[1]-x[0]**2) - 2*(1-x[0])',
|
| 478 |
+
' der[-1] = 200*(x[-1]-x[-2]**2)',
|
| 479 |
+
' return der',
|
| 480 |
+
'def rosen_hess_p(x,p):',
|
| 481 |
+
' x = np.asarray(x)',
|
| 482 |
+
' Hp = np.zeros_like(x)',
|
| 483 |
+
' Hp[0] = (1200*x[0]**2 - 400*x[1] + 2)*p[0] - 400*x[0]*p[1]',
|
| 484 |
+
' Hp[1:-1] = (-400*x[:-2]*p[:-2]+(202+1200*x[1:-1]**2-400*x[2:])*p[1:-1] ',
|
| 485 |
+
' -400*x[1:-1]*p[2:])',
|
| 486 |
+
' Hp[-1] = -400*x[-2]*p[-2] + 200*p[-1]',
|
| 487 |
+
' return Hp',
|
| 488 |
+
'x0 = np.array([1.3, 0.7, 0.8, 1.9, 1.2])',
|
| 489 |
+
"res = optimize.minimize(rosen, x0, method='Newton-CG', jac=rosen_der, hessp=rosen_hess_p,",
|
| 490 |
+
" options={'xtol': 1e-8, 'disp': True})",
|
| 491 |
+
'print(res.x)'],
|
| 492 |
+
},
|
| 493 |
+
],
|
| 494 |
+
},
|
| 495 |
+
{
|
| 496 |
+
'name' : 'Constrained multivariate minimization',
|
| 497 |
+
'sub-menu' : [
|
| 498 |
+
{
|
| 499 |
+
'name' : 'Unconstrained Sequential Least SQuares Programming (SLSQP)',
|
| 500 |
+
'snippet' : [
|
| 501 |
+
'def func(x, sign=1.0):',
|
| 502 |
+
' """ Objective function """',
|
| 503 |
+
' return sign*(2*x[0]*x[1] + 2*x[0] - x[0]**2 - 2*x[1]**2)',
|
| 504 |
+
'def func_deriv(x, sign=1.0):',
|
| 505 |
+
' """ Derivative of objective function """',
|
| 506 |
+
' dfdx0 = sign*(-2*x[0] + 2*x[1] + 2)',
|
| 507 |
+
' dfdx1 = sign*(2*x[0] - 4*x[1])',
|
| 508 |
+
' return np.array([ dfdx0, dfdx1 ])',
|
| 509 |
+
"res = optimize.minimize(func, [-1.0,1.0], args=(-1.0,), jac=func_deriv,",
|
| 510 |
+
" method='SLSQP', options={'disp': True})",
|
| 511 |
+
'print(res.x)',
|
| 512 |
+
],
|
| 513 |
+
},
|
| 514 |
+
{
|
| 515 |
+
'name' : 'Constrained Sequential Least SQuares Programming (SLSQP)',
|
| 516 |
+
'snippet' : [
|
| 517 |
+
'def func(x, sign=1.0):',
|
| 518 |
+
' """ Objective function """',
|
| 519 |
+
' return sign*(2*x[0]*x[1] + 2*x[0] - x[0]**2 - 2*x[1]**2)',
|
| 520 |
+
'def func_deriv(x, sign=1.0):',
|
| 521 |
+
' """ Derivative of objective function """',
|
| 522 |
+
' dfdx0 = sign*(-2*x[0] + 2*x[1] + 2)',
|
| 523 |
+
' dfdx1 = sign*(2*x[0] - 4*x[1])',
|
| 524 |
+
' return np.array([ dfdx0, dfdx1 ])',
|
| 525 |
+
'# Constraints correspond to x**3-y=0 and y-1>=0, respectively',
|
| 526 |
+
"cons = ({'type': 'eq',",
|
| 527 |
+
" 'fun' : lambda x: np.array([x[0]**3 - x[1]]),",
|
| 528 |
+
" 'jac' : lambda x: np.array([3.0*(x[0]**2.0), -1.0])},",
|
| 529 |
+
" {'type': 'ineq',",
|
| 530 |
+
" 'fun' : lambda x: np.array([x[1] - 1]),",
|
| 531 |
+
" 'jac' : lambda x: np.array([0.0, 1.0])})",
|
| 532 |
+
"res = optimize.minimize(func, [-1.0,1.0], args=(-1.0,), jac=func_deriv,",
|
| 533 |
+
" constraints=cons, method='SLSQP', options={'disp': True})",
|
| 534 |
+
'print(res.x)',
|
| 535 |
+
],
|
| 536 |
+
},
|
| 537 |
+
],
|
| 538 |
+
},
|
| 539 |
+
{
|
| 540 |
+
'name' : 'Fitting (see also numpy.polynomial)',
|
| 541 |
+
'sub-menu' : [
|
| 542 |
+
{
|
| 543 |
+
'name' : 'Basic function fitting',
|
| 544 |
+
'snippet' : [
|
| 545 |
+
'def fitting_function(x, a, b, c):',
|
| 546 |
+
' return a * np.exp(-b * x) + c',
|
| 547 |
+
'xdata = np.linspace(0, 4, 50)',
|
| 548 |
+
'ydata = fitting_function(xdata, 2.5, 1.3, 0.5) + 0.2 * np.random.normal(size=len(xdata))',
|
| 549 |
+
'optimal_parameters, estimated_covariance = optimize.curve_fit(fitting_function, xdata, ydata)',
|
| 550 |
+
'estimated_std_dev = np.sqrt(np.diag(estimated_covariance))',
|
| 551 |
+
],
|
| 552 |
+
},
|
| 553 |
+
],
|
| 554 |
+
},
|
| 555 |
+
],
|
| 556 |
+
},
|
| 557 |
+
|
| 558 |
+
// {
|
| 559 |
+
// 'name' : 'Signal processing',
|
| 560 |
+
// 'sub-menu' : [
|
| 561 |
+
// {
|
| 562 |
+
// 'name' : 'Setup',
|
| 563 |
+
// 'snippet' : ['from scipy import signal',],
|
| 564 |
+
// },
|
| 565 |
+
// '---',
|
| 566 |
+
// ],
|
| 567 |
+
// },
|
| 568 |
+
|
| 569 |
+
// {
|
| 570 |
+
// 'name' : 'Sparse matrices and associated routines',
|
| 571 |
+
// 'sub-menu' : [
|
| 572 |
+
// {
|
| 573 |
+
// 'name' : 'Setup',
|
| 574 |
+
// 'snippet' : ['from scipy import sparse',],
|
| 575 |
+
// },
|
| 576 |
+
// '---',
|
| 577 |
+
// ],
|
| 578 |
+
// },
|
| 579 |
+
|
| 580 |
+
// {
|
| 581 |
+
// 'name' : 'Spatial data structures and algorithms',
|
| 582 |
+
// 'sub-menu' : [
|
| 583 |
+
// {
|
| 584 |
+
// 'name' : 'Setup',
|
| 585 |
+
// 'snippet' : ['from scipy import spatial',],
|
| 586 |
+
// },
|
| 587 |
+
// '---',
|
| 588 |
+
// ],
|
| 589 |
+
// },
|
| 590 |
+
|
| 591 |
+
scipy_special,
|
| 592 |
+
|
| 593 |
+
{
|
| 594 |
+
'name' : 'Statistical distributions and functions',
|
| 595 |
+
'sub-menu' : [
|
| 596 |
+
{
|
| 597 |
+
'name' : 'Setup',
|
| 598 |
+
'snippet' : ['from scipy import stats',],
|
| 599 |
+
},
|
| 600 |
+
'---',
|
| 601 |
+
{
|
| 602 |
+
'name' : 'Docs',
|
| 603 |
+
'external-link' : 'http://docs.scipy.org/doc/scipy-0.15.1/reference/stats.html'
|
| 604 |
+
},
|
| 605 |
+
],
|
| 606 |
+
},
|
| 607 |
+
|
| 608 |
+
// {
|
| 609 |
+
// 'name' : 'C/C++ integration',
|
| 610 |
+
// 'sub-menu' : [
|
| 611 |
+
// {
|
| 612 |
+
// 'name' : 'Setup',
|
| 613 |
+
// 'snippet' : ['from scipy import weave',],
|
| 614 |
+
// },
|
| 615 |
+
// '---',
|
| 616 |
+
// ],
|
| 617 |
+
// },
|
| 618 |
+
],
|
| 619 |
+
};
|
| 620 |
+
});
|
.local/share/jupyter/nbextensions/snippets_menu/snippets_submenus_python/scipy_special.js
ADDED
|
@@ -0,0 +1,2198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
define({
|
| 2 |
+
'name' : 'Special functions',
|
| 3 |
+
'sub-menu' : [
|
| 4 |
+
{
|
| 5 |
+
'name' : 'Setup',
|
| 6 |
+
'snippet' : ['from scipy import special',],
|
| 7 |
+
},
|
| 8 |
+
'---',
|
| 9 |
+
|
| 10 |
+
{
|
| 11 |
+
'name' : 'Airy functions',
|
| 12 |
+
'sub-menu' : [
|
| 13 |
+
|
| 14 |
+
{
|
| 15 |
+
'name' : 'airy: Airy functions and their derivatives',
|
| 16 |
+
'snippet' : [
|
| 17 |
+
'special.airy(z)',
|
| 18 |
+
],
|
| 19 |
+
},
|
| 20 |
+
|
| 21 |
+
{
|
| 22 |
+
'name' : 'airye: Exponentially scaled Airy functions and their derivatives',
|
| 23 |
+
'snippet' : [
|
| 24 |
+
'special.airye(z)',
|
| 25 |
+
],
|
| 26 |
+
},
|
| 27 |
+
|
| 28 |
+
{
|
| 29 |
+
'name' : 'ai_zeros: Compute $n$ zeros $a$ and $a\'$ of $\\mathrm{Ai}(x)$ and $\\mathrm{Ai}\'(x)$, and $\\mathrm{Ai}(a\')$ and $\\mathrm{Ai}\'(a)$',
|
| 30 |
+
'snippet' : [
|
| 31 |
+
'special.ai_zeros(n)',
|
| 32 |
+
],
|
| 33 |
+
},
|
| 34 |
+
|
| 35 |
+
{
|
| 36 |
+
'name' : 'bi_zeros: Compute $n$ zeros $b$ and $b\'$ of $\\mathrm{Bi}(x)$ and $\\mathrm{Bi}\'(x)$, and $\\mathrm{Bi}(b\')$ and $\\mathrm{Bi}\'(b)$',
|
| 37 |
+
'snippet' : [
|
| 38 |
+
'special.bi_zeros(n)',
|
| 39 |
+
],
|
| 40 |
+
},
|
| 41 |
+
|
| 42 |
+
],
|
| 43 |
+
},
|
| 44 |
+
|
| 45 |
+
{
|
| 46 |
+
'name' : 'Elliptic Functions',
|
| 47 |
+
'sub-menu' : [
|
| 48 |
+
|
| 49 |
+
{
|
| 50 |
+
'name' : 'ellipj: Jacobian elliptic functions',
|
| 51 |
+
'snippet' : [
|
| 52 |
+
'special.ellipj(u, m)',
|
| 53 |
+
],
|
| 54 |
+
},
|
| 55 |
+
|
| 56 |
+
{
|
| 57 |
+
'name' : 'ellipk: Computes the complete elliptic integral of the first kind',
|
| 58 |
+
'snippet' : [
|
| 59 |
+
'special.ellipk(m)',
|
| 60 |
+
],
|
| 61 |
+
},
|
| 62 |
+
|
| 63 |
+
{
|
| 64 |
+
'name' : 'ellipkm1: The complete elliptic integral of the first kind around m=1',
|
| 65 |
+
'snippet' : [
|
| 66 |
+
'special.ellipkm1(p)',
|
| 67 |
+
],
|
| 68 |
+
},
|
| 69 |
+
|
| 70 |
+
{
|
| 71 |
+
'name' : 'ellipkinc: Incomplete elliptic integral of the first kind',
|
| 72 |
+
'snippet' : [
|
| 73 |
+
'special.ellipkinc(phi, m)',
|
| 74 |
+
],
|
| 75 |
+
},
|
| 76 |
+
|
| 77 |
+
{
|
| 78 |
+
'name' : 'ellipe: Complete elliptic integral of the second kind',
|
| 79 |
+
'snippet' : [
|
| 80 |
+
'special.ellipe(m)',
|
| 81 |
+
],
|
| 82 |
+
},
|
| 83 |
+
|
| 84 |
+
{
|
| 85 |
+
'name' : 'ellipeinc: Incomplete elliptic integral of the second kind',
|
| 86 |
+
'snippet' : [
|
| 87 |
+
'special.ellipeinc(phi,m)',
|
| 88 |
+
],
|
| 89 |
+
},
|
| 90 |
+
|
| 91 |
+
],
|
| 92 |
+
},
|
| 93 |
+
|
| 94 |
+
{
|
| 95 |
+
'name' : 'Bessel Functions',
|
| 96 |
+
'sub-menu' : [
|
| 97 |
+
|
| 98 |
+
{
|
| 99 |
+
'name' : 'Bessel Functions',
|
| 100 |
+
'sub-menu' : [
|
| 101 |
+
|
| 102 |
+
{
|
| 103 |
+
'name' : 'jv: Bessel function of the first kind of real order $v$, $J_v(z)$',
|
| 104 |
+
'snippet' : [
|
| 105 |
+
'special.jv(v, z)',
|
| 106 |
+
],
|
| 107 |
+
},
|
| 108 |
+
|
| 109 |
+
{
|
| 110 |
+
'name' : 'jve: Exponentially scaled Bessel function of the first kind of order $v$, $J_v(z)\\, e^{-|\\Im{z}|}$',
|
| 111 |
+
'snippet' : [
|
| 112 |
+
'special.jve(v, z)',
|
| 113 |
+
],
|
| 114 |
+
},
|
| 115 |
+
|
| 116 |
+
{
|
| 117 |
+
'name' : 'yn: Bessel function of the second kind of integer order $n$, $Y_n(x)$',
|
| 118 |
+
'snippet' : [
|
| 119 |
+
'special.yn(n,x)',
|
| 120 |
+
],
|
| 121 |
+
},
|
| 122 |
+
|
| 123 |
+
{
|
| 124 |
+
'name' : 'yv: Bessel function of the second kind of real order $v$, $Y_v(z)$',
|
| 125 |
+
'snippet' : [
|
| 126 |
+
'special.yv(v,z)',
|
| 127 |
+
],
|
| 128 |
+
},
|
| 129 |
+
|
| 130 |
+
{
|
| 131 |
+
'name' : 'yve: Exponentially scaled Bessel function of the second kind of real order, $Y_v(z)\\, e^{-|\\Im{z}|}$',
|
| 132 |
+
'snippet' : [
|
| 133 |
+
'special.yve(v,z)',
|
| 134 |
+
],
|
| 135 |
+
},
|
| 136 |
+
|
| 137 |
+
{
|
| 138 |
+
'name' : 'kn: Modified Bessel function of the second kind of integer order $n$, $K_n(x)$',
|
| 139 |
+
'snippet' : [
|
| 140 |
+
'special.kn(n, x)',
|
| 141 |
+
],
|
| 142 |
+
},
|
| 143 |
+
|
| 144 |
+
{
|
| 145 |
+
'name' : 'kv: Modified Bessel function of the second kind of real order $v$, $K_v(z)$',
|
| 146 |
+
'snippet' : [
|
| 147 |
+
'special.kv(v,z)',
|
| 148 |
+
],
|
| 149 |
+
},
|
| 150 |
+
|
| 151 |
+
{
|
| 152 |
+
'name' : 'kve: Exponentially scaled modified Bessel function of the second kind, $K_v(z)\\, e^{z}$',
|
| 153 |
+
'snippet' : [
|
| 154 |
+
'special.kve(v,z)',
|
| 155 |
+
],
|
| 156 |
+
},
|
| 157 |
+
|
| 158 |
+
{
|
| 159 |
+
'name' : 'iv: Modified Bessel function of the first kind of real order $v$, $I_v(z)$',
|
| 160 |
+
'snippet' : [
|
| 161 |
+
'special.iv(v,z)',
|
| 162 |
+
],
|
| 163 |
+
},
|
| 164 |
+
|
| 165 |
+
{
|
| 166 |
+
'name' : 'ive: Exponentially scaled modified Bessel function of the first kind of real order $v$, $I_v(z)\\, e^{-|\\Re{z}|}$',
|
| 167 |
+
'snippet' : [
|
| 168 |
+
'special.ive(v,z)',
|
| 169 |
+
],
|
| 170 |
+
},
|
| 171 |
+
|
| 172 |
+
{
|
| 173 |
+
'name' : 'hankel1: Hankel function of the first kind, $H^{(1)}_v(z)$',
|
| 174 |
+
'snippet' : [
|
| 175 |
+
'special.hankel1(v, z)',
|
| 176 |
+
],
|
| 177 |
+
},
|
| 178 |
+
|
| 179 |
+
{
|
| 180 |
+
'name' : 'hankel1e: Exponentially scaled Hankel function of the first kind, $H^{(1)}_v(z)\\, e^{-i\\, z}$',
|
| 181 |
+
'snippet' : [
|
| 182 |
+
'special.hankel1e(v, z)',
|
| 183 |
+
],
|
| 184 |
+
},
|
| 185 |
+
|
| 186 |
+
{
|
| 187 |
+
'name' : 'hankel2: Hankel function of the second kind, $H^{(2)}_v(z)$',
|
| 188 |
+
'snippet' : [
|
| 189 |
+
'special.hankel2(v, z)',
|
| 190 |
+
],
|
| 191 |
+
},
|
| 192 |
+
|
| 193 |
+
{
|
| 194 |
+
'name' : 'hankel2e: Exponentially scaled Hankel function of the second kind, $H^{(2)}_v(z)\\, e^{i\\, z}$',
|
| 195 |
+
'snippet' : [
|
| 196 |
+
'special.hankel2e(v, z)',
|
| 197 |
+
],
|
| 198 |
+
},
|
| 199 |
+
|
| 200 |
+
// The following is not an universal function:
|
| 201 |
+
|
| 202 |
+
{
|
| 203 |
+
'name' : 'lmbda: Compute sequence of lambda functions with arbitrary order $v$ and their derivatives',
|
| 204 |
+
'snippet' : [
|
| 205 |
+
'special.lmbda(v, x)',
|
| 206 |
+
],
|
| 207 |
+
},
|
| 208 |
+
|
| 209 |
+
],
|
| 210 |
+
},
|
| 211 |
+
|
| 212 |
+
{
|
| 213 |
+
'name' : 'Zeros of Bessel Functions',
|
| 214 |
+
'sub-menu' : [
|
| 215 |
+
|
| 216 |
+
// These are not universal functions:
|
| 217 |
+
|
| 218 |
+
{
|
| 219 |
+
'name' : 'jnjnp_zeros: Compute nt (<=1200) zeros of the Bessel functions $J_n$ and $J_n\'$ and arange them in order of their magnitudes',
|
| 220 |
+
'snippet' : [
|
| 221 |
+
'special.jnjnp_zeros(nt)',
|
| 222 |
+
],
|
| 223 |
+
},
|
| 224 |
+
|
| 225 |
+
{
|
| 226 |
+
'name' : 'jnyn_zeros: Compute nt zeros of the Bessel functions $J_n(x)$, $J_n\'(x)$, $Y_n(x)$, and $Y_n\'(x)$, respectively',
|
| 227 |
+
'snippet' : [
|
| 228 |
+
'special.jnyn_zeros(n, nt)',
|
| 229 |
+
],
|
| 230 |
+
},
|
| 231 |
+
|
| 232 |
+
{
|
| 233 |
+
'name' : 'jn_zeros: Compute nt zeros of the Bessel function $J_n(x)$',
|
| 234 |
+
'snippet' : [
|
| 235 |
+
'special.jn_zeros(n, nt)',
|
| 236 |
+
],
|
| 237 |
+
},
|
| 238 |
+
|
| 239 |
+
{
|
| 240 |
+
'name' : 'jnp_zeros: Compute nt zeros of the Bessel function $J_n\'(x)$',
|
| 241 |
+
'snippet' : [
|
| 242 |
+
'special.jnp_zeros(n, nt)',
|
| 243 |
+
],
|
| 244 |
+
},
|
| 245 |
+
|
| 246 |
+
{
|
| 247 |
+
'name' : 'yn_zeros: Compute nt zeros of the Bessel function $Y_n(x)$',
|
| 248 |
+
'snippet' : [
|
| 249 |
+
'special.yn_zeros(n, nt)',
|
| 250 |
+
],
|
| 251 |
+
},
|
| 252 |
+
|
| 253 |
+
{
|
| 254 |
+
'name' : 'ynp_zeros: Compute nt zeros of the Bessel function $Y_n\'(x)$',
|
| 255 |
+
'snippet' : [
|
| 256 |
+
'special.ynp_zeros(n, nt)',
|
| 257 |
+
],
|
| 258 |
+
},
|
| 259 |
+
|
| 260 |
+
{
|
| 261 |
+
'name' : 'y0_zeros: Returns nt (complex or real) zeros of $Y_0(z)$, $z_0$, and the value of $Y_0\'(z_0) = -Y_1(z_0)$ at each zero',
|
| 262 |
+
'snippet' : [
|
| 263 |
+
'special.y0_zeros(nt, complex=0)',
|
| 264 |
+
],
|
| 265 |
+
},
|
| 266 |
+
|
| 267 |
+
{
|
| 268 |
+
'name' : 'y1_zeros: Returns nt (complex or real) zeros of $Y_1(z)$, $z_1$, and the value of $Y_1\'(z_1) = Y_0(z_1)$ at each zero',
|
| 269 |
+
'snippet' : [
|
| 270 |
+
'special.y1_zeros(nt, complex=0)',
|
| 271 |
+
],
|
| 272 |
+
},
|
| 273 |
+
|
| 274 |
+
{
|
| 275 |
+
'name' : 'y1p_zeros: Returns nt (complex or real) zeros of $Y_1\'(z)$, $z_1\'$, and the value of $Y_1(z_1\')$ at each zero',
|
| 276 |
+
'snippet' : [
|
| 277 |
+
'special.y1p_zeros(nt, complex=0)',
|
| 278 |
+
],
|
| 279 |
+
},
|
| 280 |
+
|
| 281 |
+
],
|
| 282 |
+
},
|
| 283 |
+
|
| 284 |
+
{
|
| 285 |
+
'name' : 'Faster versions of common Bessel Functions',
|
| 286 |
+
'sub-menu' : [
|
| 287 |
+
|
| 288 |
+
{
|
| 289 |
+
'name' : 'j0: Bessel function the first kind of order 0, $J_0(x)$',
|
| 290 |
+
'snippet' : [
|
| 291 |
+
'special.j0(x)',
|
| 292 |
+
],
|
| 293 |
+
},
|
| 294 |
+
|
| 295 |
+
{
|
| 296 |
+
'name' : 'j1: Bessel function of the first kind of order 1, $J_1(x)$',
|
| 297 |
+
'snippet' : [
|
| 298 |
+
'special.j1(x)',
|
| 299 |
+
],
|
| 300 |
+
},
|
| 301 |
+
|
| 302 |
+
{
|
| 303 |
+
'name' : 'y0: Bessel function of the second kind of order 0, $Y_0(x)$',
|
| 304 |
+
'snippet' : [
|
| 305 |
+
'special.y0(x)',
|
| 306 |
+
],
|
| 307 |
+
},
|
| 308 |
+
|
| 309 |
+
{
|
| 310 |
+
'name' : 'y1: Bessel function of the second kind of order 1, $Y_1(x)$',
|
| 311 |
+
'snippet' : [
|
| 312 |
+
'special.y1(x)',
|
| 313 |
+
],
|
| 314 |
+
},
|
| 315 |
+
|
| 316 |
+
{
|
| 317 |
+
'name' : 'i0: Modified Bessel function of order 0, $I_0(x)$',
|
| 318 |
+
'snippet' : [
|
| 319 |
+
'special.i0(x)',
|
| 320 |
+
],
|
| 321 |
+
},
|
| 322 |
+
|
| 323 |
+
{
|
| 324 |
+
'name' : 'i0e: Exponentially scaled modified Bessel function of order 0, $I_0(x)\\, e^{-|x|}$',
|
| 325 |
+
'snippet' : [
|
| 326 |
+
'special.i0e(x)',
|
| 327 |
+
],
|
| 328 |
+
},
|
| 329 |
+
|
| 330 |
+
{
|
| 331 |
+
'name' : 'i1: Modified Bessel function of order 1, $I_1(x)$',
|
| 332 |
+
'snippet' : [
|
| 333 |
+
'special.i1(x)',
|
| 334 |
+
],
|
| 335 |
+
},
|
| 336 |
+
|
| 337 |
+
{
|
| 338 |
+
'name' : 'i1e: Exponentially scaled modified Bessel function of order 1, $I_1(x)\\, e^{-|x|}$',
|
| 339 |
+
'snippet' : [
|
| 340 |
+
'special.i1e(x)',
|
| 341 |
+
],
|
| 342 |
+
},
|
| 343 |
+
|
| 344 |
+
{
|
| 345 |
+
'name' : 'k0: Modified Bessel function K of order 0, $K_0(x)$',
|
| 346 |
+
'snippet' : [
|
| 347 |
+
'special.k0(x)',
|
| 348 |
+
],
|
| 349 |
+
},
|
| 350 |
+
|
| 351 |
+
{
|
| 352 |
+
'name' : 'k0e: Exponentially scaled modified Bessel function K of order 0, $K_0(x)\\, e^{x}$',
|
| 353 |
+
'snippet' : [
|
| 354 |
+
'special.k0e(x)',
|
| 355 |
+
],
|
| 356 |
+
},
|
| 357 |
+
|
| 358 |
+
{
|
| 359 |
+
'name' : 'k1: Modified Bessel function of the first kind of order 1, $K_1(x)$',
|
| 360 |
+
'snippet' : [
|
| 361 |
+
'special.k1(x)',
|
| 362 |
+
],
|
| 363 |
+
},
|
| 364 |
+
|
| 365 |
+
{
|
| 366 |
+
'name' : 'k1e: Exponentially scaled modified Bessel function K of order 1, $K_1(x)\\, e^{x}$',
|
| 367 |
+
'snippet' : [
|
| 368 |
+
'special.k1e(x)',
|
| 369 |
+
],
|
| 370 |
+
},
|
| 371 |
+
|
| 372 |
+
],
|
| 373 |
+
},
|
| 374 |
+
|
| 375 |
+
{
|
| 376 |
+
'name' : 'Integrals of Bessel Functions',
|
| 377 |
+
'sub-menu' : [
|
| 378 |
+
|
| 379 |
+
{
|
| 380 |
+
'name' : 'itj0y0: Integrals of Bessel functions of order 0: $\\int_0^x J_0(t)\\, dt$, $\\int_0^x Y_0(t)\\, dt$',
|
| 381 |
+
'snippet' : [
|
| 382 |
+
'special.itj0y0(x)',
|
| 383 |
+
],
|
| 384 |
+
},
|
| 385 |
+
|
| 386 |
+
{
|
| 387 |
+
'name' : 'it2j0y0: Integrals related to Bessel functions of order 0: $\\int_0^x \\frac{1-J_0(t)}{t}\\, dt$, $\\int_x^\\infty \\frac{Y_0(t)}{t}\\, dt$',
|
| 388 |
+
'snippet' : [
|
| 389 |
+
'special.it2j0y0(x)',
|
| 390 |
+
],
|
| 391 |
+
},
|
| 392 |
+
|
| 393 |
+
{
|
| 394 |
+
'name' : 'iti0k0: Integrals of modified Bessel functions of order 0: $\\int_0^x I_0(t)\\, dt$, $\\int_0^x K_0(t)\\, dt$',
|
| 395 |
+
'snippet' : [
|
| 396 |
+
'special.iti0k0(x)',
|
| 397 |
+
],
|
| 398 |
+
},
|
| 399 |
+
|
| 400 |
+
{
|
| 401 |
+
'name' : 'it2i0k0: Integrals related to modified Bessel functions of order 0: $\\int_0^x \\frac{I_0(t)-1}{t}\\, dt$, $\\int_x^\\infty \\frac{K_0(t)}{t}\\, dt$',
|
| 402 |
+
'snippet' : [
|
| 403 |
+
'special.it2i0k0(x)',
|
| 404 |
+
],
|
| 405 |
+
},
|
| 406 |
+
|
| 407 |
+
{
|
| 408 |
+
'name' : 'besselpoly: Weighted integral of a Bessel function, $\\int_0^1 x^\\lambda J_\\nu(2 a x) \\, dx$',
|
| 409 |
+
'snippet' : [
|
| 410 |
+
'special.besselpoly(a, lmb, nu)',
|
| 411 |
+
],
|
| 412 |
+
},
|
| 413 |
+
|
| 414 |
+
],
|
| 415 |
+
},
|
| 416 |
+
|
| 417 |
+
{
|
| 418 |
+
'name' : 'Derivatives of Bessel Functions',
|
| 419 |
+
'sub-menu' : [
|
| 420 |
+
|
| 421 |
+
{
|
| 422 |
+
'name' : 'jvp: Return the $n$th derivative of $J_v(z)$ with respect to $z$',
|
| 423 |
+
'snippet' : [
|
| 424 |
+
'special.jvp(v, z, n=1)',
|
| 425 |
+
],
|
| 426 |
+
},
|
| 427 |
+
|
| 428 |
+
{
|
| 429 |
+
'name' : 'yvp: Return the $n$th derivative of $Y_v(z)$ with respect to $z$',
|
| 430 |
+
'snippet' : [
|
| 431 |
+
'special.yvp(v, z, n=1)',
|
| 432 |
+
],
|
| 433 |
+
},
|
| 434 |
+
|
| 435 |
+
{
|
| 436 |
+
'name' : 'kvp: Return the $n$th derivative of $K_v(z)$ with respect to $z$',
|
| 437 |
+
'snippet' : [
|
| 438 |
+
'special.kvp(v, z, n=1)',
|
| 439 |
+
],
|
| 440 |
+
},
|
| 441 |
+
|
| 442 |
+
{
|
| 443 |
+
'name' : 'ivp: Return the $n$th derivative of $I_v(z)$ with respect to $z$',
|
| 444 |
+
'snippet' : [
|
| 445 |
+
'special.ivp(v, z, n=1)',
|
| 446 |
+
],
|
| 447 |
+
},
|
| 448 |
+
|
| 449 |
+
{
|
| 450 |
+
'name' : 'h1vp: Return the $n$th derivative of $H^{(1)}_v(z)$ with respect to $z$',
|
| 451 |
+
'snippet' : [
|
| 452 |
+
'special.h1vp(v, z, n=1)',
|
| 453 |
+
],
|
| 454 |
+
},
|
| 455 |
+
|
| 456 |
+
{
|
| 457 |
+
'name' : 'h2vp: Return the $n$th derivative of $H^{(2)}_v(z)$ with respect to z',
|
| 458 |
+
'snippet' : [
|
| 459 |
+
'special.h2vp(v, z, n=1)',
|
| 460 |
+
],
|
| 461 |
+
},
|
| 462 |
+
|
| 463 |
+
],
|
| 464 |
+
},
|
| 465 |
+
|
| 466 |
+
{
|
| 467 |
+
'name' : 'Spherical Bessel Functions',
|
| 468 |
+
'sub-menu' : [
|
| 469 |
+
|
| 470 |
+
// These are not universal functions:
|
| 471 |
+
|
| 472 |
+
{
|
| 473 |
+
'name' : 'sph_jn: Compute the spherical Bessel function $j_n(z)$ and its derivative for all orders up to and including $n$',
|
| 474 |
+
'snippet' : [
|
| 475 |
+
'special.sph_jn(n, z)',
|
| 476 |
+
],
|
| 477 |
+
},
|
| 478 |
+
|
| 479 |
+
{
|
| 480 |
+
'name' : 'sph_yn: Compute the spherical Bessel function $y_n(z)$ and its derivative for all orders up to and including $n$',
|
| 481 |
+
'snippet' : [
|
| 482 |
+
'special.sph_yn(n, z)',
|
| 483 |
+
],
|
| 484 |
+
},
|
| 485 |
+
|
| 486 |
+
{
|
| 487 |
+
'name' : 'sph_jnyn: Compute the spherical Bessel functions, $j_n(z)$ and $y_n(z)$ and their derivatives for all orders up to and including $n$',
|
| 488 |
+
'snippet' : [
|
| 489 |
+
'special.sph_jnyn(n, z)',
|
| 490 |
+
],
|
| 491 |
+
},
|
| 492 |
+
|
| 493 |
+
{
|
| 494 |
+
'name' : 'sph_in: Compute the spherical Bessel function $i_n(z)$ and its derivative for all orders up to and including $n$',
|
| 495 |
+
'snippet' : [
|
| 496 |
+
'special.sph_in(n, z)',
|
| 497 |
+
],
|
| 498 |
+
},
|
| 499 |
+
|
| 500 |
+
{
|
| 501 |
+
'name' : 'sph_kn: Compute the spherical Bessel function $k_n(z)$ and its derivative for all orders up to and including $n$',
|
| 502 |
+
'snippet' : [
|
| 503 |
+
'special.sph_kn(n, z)',
|
| 504 |
+
],
|
| 505 |
+
},
|
| 506 |
+
|
| 507 |
+
{
|
| 508 |
+
'name' : 'sph_inkn: Compute the spherical Bessel functions, $i_n(z)$ and $k_n(z)$ and their derivatives for all orders up to and including $n$',
|
| 509 |
+
'snippet' : [
|
| 510 |
+
'special.sph_inkn(n, z)',
|
| 511 |
+
],
|
| 512 |
+
},
|
| 513 |
+
|
| 514 |
+
],
|
| 515 |
+
},
|
| 516 |
+
|
| 517 |
+
{
|
| 518 |
+
'name' : 'Riccati-Bessel Functions',
|
| 519 |
+
'sub-menu' : [
|
| 520 |
+
|
| 521 |
+
// These are not universal functions:
|
| 522 |
+
|
| 523 |
+
{
|
| 524 |
+
'name' : 'riccati_jn: Compute the Ricatti-Bessel function of the first kind and its derivative for all orders up to and including n',
|
| 525 |
+
'snippet' : [
|
| 526 |
+
'special.riccati_jn(n, x)',
|
| 527 |
+
],
|
| 528 |
+
},
|
| 529 |
+
|
| 530 |
+
{
|
| 531 |
+
'name' : 'riccati_yn: Compute the Ricatti-Bessel function of the second kind and its derivative for all orders up to and including n',
|
| 532 |
+
'snippet' : [
|
| 533 |
+
'special.riccati_yn(n, x)',
|
| 534 |
+
],
|
| 535 |
+
},
|
| 536 |
+
|
| 537 |
+
],
|
| 538 |
+
},
|
| 539 |
+
],
|
| 540 |
+
},
|
| 541 |
+
|
| 542 |
+
{
|
| 543 |
+
'name' : 'Struve Functions',
|
| 544 |
+
'sub-menu' : [
|
| 545 |
+
|
| 546 |
+
{
|
| 547 |
+
'name' : 'struve: Struve function',
|
| 548 |
+
'snippet' : [
|
| 549 |
+
'special.struve(v,x)',
|
| 550 |
+
],
|
| 551 |
+
},
|
| 552 |
+
|
| 553 |
+
{
|
| 554 |
+
'name' : 'modstruve: Modified Struve function',
|
| 555 |
+
'snippet' : [
|
| 556 |
+
'special.modstruve(v, x)',
|
| 557 |
+
],
|
| 558 |
+
},
|
| 559 |
+
|
| 560 |
+
{
|
| 561 |
+
'name' : 'itstruve0: Integral of the Struve function of order 0',
|
| 562 |
+
'snippet' : [
|
| 563 |
+
'special.itstruve0(x)',
|
| 564 |
+
],
|
| 565 |
+
},
|
| 566 |
+
|
| 567 |
+
{
|
| 568 |
+
'name' : 'it2struve0: Integral related to Struve function of order 0',
|
| 569 |
+
'snippet' : [
|
| 570 |
+
'special.it2struve0(x)',
|
| 571 |
+
],
|
| 572 |
+
},
|
| 573 |
+
|
| 574 |
+
{
|
| 575 |
+
'name' : 'itmodstruve0: Integral of the modified Struve function of order 0',
|
| 576 |
+
'snippet' : [
|
| 577 |
+
'special.itmodstruve0(x)',
|
| 578 |
+
],
|
| 579 |
+
},
|
| 580 |
+
|
| 581 |
+
],
|
| 582 |
+
},
|
| 583 |
+
|
| 584 |
+
{
|
| 585 |
+
'name' : 'Statistical Functions (see also scipy.stats)',
|
| 586 |
+
'sub-menu' : [
|
| 587 |
+
|
| 588 |
+
// See also
|
| 589 |
+
// scipy.stats: Friendly versions of these functions.
|
| 590 |
+
|
| 591 |
+
{
|
| 592 |
+
'name' : 'bdtr: Binomial distribution cumulative distribution function',
|
| 593 |
+
'snippet' : [
|
| 594 |
+
'special.bdtr(k, n, p)',
|
| 595 |
+
],
|
| 596 |
+
},
|
| 597 |
+
|
| 598 |
+
{
|
| 599 |
+
'name' : 'bdtrc: Binomial distribution survival function',
|
| 600 |
+
'snippet' : [
|
| 601 |
+
'special.bdtrc(k, n, p)',
|
| 602 |
+
],
|
| 603 |
+
},
|
| 604 |
+
|
| 605 |
+
{
|
| 606 |
+
'name' : 'bdtri: Inverse function to bdtr vs',
|
| 607 |
+
'snippet' : [
|
| 608 |
+
'special.bdtri(k, n, y)',
|
| 609 |
+
],
|
| 610 |
+
},
|
| 611 |
+
|
| 612 |
+
{
|
| 613 |
+
'name' : 'btdtr: Cumulative beta distribution',
|
| 614 |
+
'snippet' : [
|
| 615 |
+
'special.btdtr(a,b,x)',
|
| 616 |
+
],
|
| 617 |
+
},
|
| 618 |
+
|
| 619 |
+
{
|
| 620 |
+
'name' : 'btdtri: p-th quantile of the beta distribution',
|
| 621 |
+
'snippet' : [
|
| 622 |
+
'special.btdtri(a,b,p)',
|
| 623 |
+
],
|
| 624 |
+
},
|
| 625 |
+
|
| 626 |
+
{
|
| 627 |
+
'name' : 'fdtr: F cumulative distribution function',
|
| 628 |
+
'snippet' : [
|
| 629 |
+
'special.fdtr(dfn, dfd, x)',
|
| 630 |
+
],
|
| 631 |
+
},
|
| 632 |
+
|
| 633 |
+
{
|
| 634 |
+
'name' : 'fdtrc: F survival function',
|
| 635 |
+
'snippet' : [
|
| 636 |
+
'special.fdtrc(dfn, dfd, x)',
|
| 637 |
+
],
|
| 638 |
+
},
|
| 639 |
+
|
| 640 |
+
{
|
| 641 |
+
'name' : 'fdtri: Inverse to fdtr vs x',
|
| 642 |
+
'snippet' : [
|
| 643 |
+
'special.fdtri(dfn, dfd, p)',
|
| 644 |
+
],
|
| 645 |
+
},
|
| 646 |
+
|
| 647 |
+
{
|
| 648 |
+
'name' : 'gdtr: Gamma distribution cumulative density function',
|
| 649 |
+
'snippet' : [
|
| 650 |
+
'special.gdtr(a,b,x)',
|
| 651 |
+
],
|
| 652 |
+
},
|
| 653 |
+
|
| 654 |
+
{
|
| 655 |
+
'name' : 'gdtrc: Gamma distribution survival function',
|
| 656 |
+
'snippet' : [
|
| 657 |
+
'special.gdtrc(a,b,x)',
|
| 658 |
+
],
|
| 659 |
+
},
|
| 660 |
+
|
| 661 |
+
{
|
| 662 |
+
'name' : 'gdtria: Inverse of gdtr vs a',
|
| 663 |
+
'snippet' : [
|
| 664 |
+
'special.gdtria(p, b, x)',
|
| 665 |
+
],
|
| 666 |
+
},
|
| 667 |
+
|
| 668 |
+
{
|
| 669 |
+
'name' : 'gdtrib: Inverse of gdtr vs b',
|
| 670 |
+
'snippet' : [
|
| 671 |
+
'special.gdtrib(a, p, x)',
|
| 672 |
+
],
|
| 673 |
+
},
|
| 674 |
+
|
| 675 |
+
{
|
| 676 |
+
'name' : 'gdtrix: Inverse of gdtr vs x',
|
| 677 |
+
'snippet' : [
|
| 678 |
+
'special.gdtrix(a, b, p)',
|
| 679 |
+
],
|
| 680 |
+
},
|
| 681 |
+
|
| 682 |
+
{
|
| 683 |
+
'name' : 'nbdtr: Negative binomial cumulative distribution function',
|
| 684 |
+
'snippet' : [
|
| 685 |
+
'special.nbdtr(k, n, p)',
|
| 686 |
+
],
|
| 687 |
+
},
|
| 688 |
+
|
| 689 |
+
{
|
| 690 |
+
'name' : 'nbdtrc: Negative binomial survival function',
|
| 691 |
+
'snippet' : [
|
| 692 |
+
'special.nbdtrc(k,n,p)',
|
| 693 |
+
],
|
| 694 |
+
},
|
| 695 |
+
|
| 696 |
+
{
|
| 697 |
+
'name' : 'nbdtri: Inverse of nbdtr vs p',
|
| 698 |
+
'snippet' : [
|
| 699 |
+
'special.nbdtri(k, n, y)',
|
| 700 |
+
],
|
| 701 |
+
},
|
| 702 |
+
|
| 703 |
+
{
|
| 704 |
+
'name' : 'ncfdtr: Cumulative distribution function of the non-central $F$ distribution.',
|
| 705 |
+
'snippet' : [
|
| 706 |
+
'special.ncfdtr(dfn, dfd, nc, f)',
|
| 707 |
+
],
|
| 708 |
+
},
|
| 709 |
+
|
| 710 |
+
{
|
| 711 |
+
'name' : 'ncfdtridfd: Calculate degrees of freedom (denominator) for the noncentral $F$ distribution.',
|
| 712 |
+
'snippet' : [
|
| 713 |
+
'special.ncfdtridfd(p, f, dfn, nc)',
|
| 714 |
+
],
|
| 715 |
+
},
|
| 716 |
+
|
| 717 |
+
{
|
| 718 |
+
'name' : 'ncfdtridfn: Calculate degrees of freedom (numerator) for the noncentral $F$ distribution.',
|
| 719 |
+
'snippet' : [
|
| 720 |
+
'special.ncfdtridfn(p, f, dfd, nc)',
|
| 721 |
+
],
|
| 722 |
+
},
|
| 723 |
+
|
| 724 |
+
{
|
| 725 |
+
'name' : 'ncfdtri: Inverse cumulative distribution function of the non-central $F$ distribution.',
|
| 726 |
+
'snippet' : [
|
| 727 |
+
'special.ncfdtri(p, dfn, dfd, nc)',
|
| 728 |
+
],
|
| 729 |
+
},
|
| 730 |
+
|
| 731 |
+
{
|
| 732 |
+
'name' : 'ncfdtrinc: Calculate non-centrality parameter for non-central $F$ distribution.',
|
| 733 |
+
'snippet' : [
|
| 734 |
+
'special.ncfdtrinc(p, f, dfn, dfd)',
|
| 735 |
+
],
|
| 736 |
+
},
|
| 737 |
+
|
| 738 |
+
{
|
| 739 |
+
'name' : 'nctdtr: Cumulative distribution function of the non-central $t$ distribution.',
|
| 740 |
+
'snippet' : [
|
| 741 |
+
'special.nctdtr(df, nc, t)',
|
| 742 |
+
],
|
| 743 |
+
},
|
| 744 |
+
|
| 745 |
+
{
|
| 746 |
+
'name' : 'nctdtridf: Calculate degrees of freedom for non-central $t$ distribution.',
|
| 747 |
+
'snippet' : [
|
| 748 |
+
'special.nctdtridf(p, nc, t)',
|
| 749 |
+
],
|
| 750 |
+
},
|
| 751 |
+
|
| 752 |
+
{
|
| 753 |
+
'name' : 'nctdtrit: Inverse cumulative distribution function of the non-central $t$ distribution.',
|
| 754 |
+
'snippet' : [
|
| 755 |
+
'special.nctdtrit(df, nc, p)',
|
| 756 |
+
],
|
| 757 |
+
},
|
| 758 |
+
|
| 759 |
+
{
|
| 760 |
+
'name' : 'nctdtrinc: Calculate non-centrality parameter for non-central $t$ distribution.',
|
| 761 |
+
'snippet' : [
|
| 762 |
+
'special.nctdtrinc(df, p, t)',
|
| 763 |
+
],
|
| 764 |
+
},
|
| 765 |
+
|
| 766 |
+
{
|
| 767 |
+
'name' : 'nrdtrimn: Calculate mean of normal distribution given other params.',
|
| 768 |
+
'snippet' : [
|
| 769 |
+
'special.nrdtrimn(p, x, std)',
|
| 770 |
+
],
|
| 771 |
+
},
|
| 772 |
+
|
| 773 |
+
{
|
| 774 |
+
'name' : 'nrdtrisd: Calculate standard deviation of normal distribution given other params.',
|
| 775 |
+
'snippet' : [
|
| 776 |
+
'special.nrdtrisd(p, x, mn)',
|
| 777 |
+
],
|
| 778 |
+
},
|
| 779 |
+
|
| 780 |
+
{
|
| 781 |
+
'name' : 'pdtr: Poisson cumulative distribution function',
|
| 782 |
+
'snippet' : [
|
| 783 |
+
'special.pdtr(k, m)',
|
| 784 |
+
],
|
| 785 |
+
},
|
| 786 |
+
|
| 787 |
+
{
|
| 788 |
+
'name' : 'pdtrc: Poisson survival function',
|
| 789 |
+
'snippet' : [
|
| 790 |
+
'special.pdtrc(k, m)',
|
| 791 |
+
],
|
| 792 |
+
},
|
| 793 |
+
|
| 794 |
+
{
|
| 795 |
+
'name' : 'pdtri: Inverse to pdtr vs m',
|
| 796 |
+
'snippet' : [
|
| 797 |
+
'special.pdtri(k,y)',
|
| 798 |
+
],
|
| 799 |
+
},
|
| 800 |
+
|
| 801 |
+
{
|
| 802 |
+
'name' : 'stdtr: Student $t$ distribution cumulative density function',
|
| 803 |
+
'snippet' : [
|
| 804 |
+
'special.stdtr(df,t)',
|
| 805 |
+
],
|
| 806 |
+
},
|
| 807 |
+
|
| 808 |
+
{
|
| 809 |
+
'name' : 'stdtridf: Inverse of stdtr vs df',
|
| 810 |
+
'snippet' : [
|
| 811 |
+
'special.stdtridf(p,t)',
|
| 812 |
+
],
|
| 813 |
+
},
|
| 814 |
+
|
| 815 |
+
{
|
| 816 |
+
'name' : 'stdtrit: Inverse of stdtr vs t',
|
| 817 |
+
'snippet' : [
|
| 818 |
+
'special.stdtrit(df,p)',
|
| 819 |
+
],
|
| 820 |
+
},
|
| 821 |
+
|
| 822 |
+
{
|
| 823 |
+
'name' : 'chdtr: Chi square cumulative distribution function',
|
| 824 |
+
'snippet' : [
|
| 825 |
+
'special.chdtr(v, x)',
|
| 826 |
+
],
|
| 827 |
+
},
|
| 828 |
+
|
| 829 |
+
{
|
| 830 |
+
'name' : 'chdtrc: Chi square survival function',
|
| 831 |
+
'snippet' : [
|
| 832 |
+
'special.chdtrc(v,x)',
|
| 833 |
+
],
|
| 834 |
+
},
|
| 835 |
+
|
| 836 |
+
{
|
| 837 |
+
'name' : 'chdtri: Inverse to chdtrc',
|
| 838 |
+
'snippet' : [
|
| 839 |
+
'special.chdtri(v,p)',
|
| 840 |
+
],
|
| 841 |
+
},
|
| 842 |
+
|
| 843 |
+
{
|
| 844 |
+
'name' : 'ndtr: Gaussian cumulative distribution function',
|
| 845 |
+
'snippet' : [
|
| 846 |
+
'special.ndtr(x)',
|
| 847 |
+
],
|
| 848 |
+
},
|
| 849 |
+
|
| 850 |
+
{
|
| 851 |
+
'name' : 'ndtri: Inverse of ndtr vs x',
|
| 852 |
+
'snippet' : [
|
| 853 |
+
'special.ndtri(y)',
|
| 854 |
+
],
|
| 855 |
+
},
|
| 856 |
+
|
| 857 |
+
{
|
| 858 |
+
'name' : 'smirnov: Kolmogorov-Smirnov complementary cumulative distribution function',
|
| 859 |
+
'snippet' : [
|
| 860 |
+
'special.smirnov(n,e)',
|
| 861 |
+
],
|
| 862 |
+
},
|
| 863 |
+
|
| 864 |
+
{
|
| 865 |
+
'name' : 'smirnovi: Inverse to smirnov',
|
| 866 |
+
'snippet' : [
|
| 867 |
+
'special.smirnovi(n,y)',
|
| 868 |
+
],
|
| 869 |
+
},
|
| 870 |
+
|
| 871 |
+
{
|
| 872 |
+
'name' : 'kolmogorov: Complementary cumulative distribution function of Kolmogorov distribution',
|
| 873 |
+
'snippet' : [
|
| 874 |
+
'special.kolmogorov(y)',
|
| 875 |
+
],
|
| 876 |
+
},
|
| 877 |
+
|
| 878 |
+
{
|
| 879 |
+
'name' : 'kolmogi: Inverse function to kolmogorov',
|
| 880 |
+
'snippet' : [
|
| 881 |
+
'special.kolmogi(p)',
|
| 882 |
+
],
|
| 883 |
+
},
|
| 884 |
+
|
| 885 |
+
{
|
| 886 |
+
'name' : 'tklmbda: Tukey-Lambda cumulative distribution function',
|
| 887 |
+
'snippet' : [
|
| 888 |
+
'special.tklmbda(x, lmbda)',
|
| 889 |
+
],
|
| 890 |
+
},
|
| 891 |
+
|
| 892 |
+
{
|
| 893 |
+
'name' : 'logit: Logit ufunc for ndarrays',
|
| 894 |
+
'snippet' : [
|
| 895 |
+
'special.logit(x)',
|
| 896 |
+
],
|
| 897 |
+
},
|
| 898 |
+
|
| 899 |
+
{
|
| 900 |
+
'name' : 'expit: Expit ufunc for ndarrays',
|
| 901 |
+
'snippet' : [
|
| 902 |
+
'special.expit(x)',
|
| 903 |
+
],
|
| 904 |
+
},
|
| 905 |
+
|
| 906 |
+
{
|
| 907 |
+
'name' : 'boxcox: Compute the Box-Cox transformation',
|
| 908 |
+
'snippet' : [
|
| 909 |
+
'special.boxcox(x, lmbda)',
|
| 910 |
+
],
|
| 911 |
+
},
|
| 912 |
+
|
| 913 |
+
{
|
| 914 |
+
'name' : 'boxcox1p: Compute the Box-Cox transformation of 1 + x',
|
| 915 |
+
'snippet' : [
|
| 916 |
+
'special.boxcox1p(x, lmbda)',
|
| 917 |
+
],
|
| 918 |
+
},
|
| 919 |
+
|
| 920 |
+
],
|
| 921 |
+
},
|
| 922 |
+
|
| 923 |
+
{
|
| 924 |
+
'name' : 'Information Theory Functions',
|
| 925 |
+
'sub-menu' : [
|
| 926 |
+
{
|
| 927 |
+
'name' : 'entr: Elementwise function for computing entropy.',
|
| 928 |
+
'snippet' : [
|
| 929 |
+
'special.entr(x)',
|
| 930 |
+
],
|
| 931 |
+
},
|
| 932 |
+
|
| 933 |
+
{
|
| 934 |
+
'name' : 'rel_entr: Elementwise function for computing relative entropy.',
|
| 935 |
+
'snippet' : [
|
| 936 |
+
'special.rel_entr(x, y)',
|
| 937 |
+
],
|
| 938 |
+
},
|
| 939 |
+
|
| 940 |
+
{
|
| 941 |
+
'name' : 'kl_div: Elementwise function for computing Kullback-Leibler divergence.',
|
| 942 |
+
'snippet' : [
|
| 943 |
+
'special.kl_div(x, y)',
|
| 944 |
+
],
|
| 945 |
+
},
|
| 946 |
+
|
| 947 |
+
{
|
| 948 |
+
'name' : 'huber: Huber loss function.',
|
| 949 |
+
'snippet' : [
|
| 950 |
+
'special.huber(delta, r)',
|
| 951 |
+
],
|
| 952 |
+
},
|
| 953 |
+
|
| 954 |
+
{
|
| 955 |
+
'name' : 'pseudo_huber: Pseudo-Huber loss function.',
|
| 956 |
+
'snippet' : [
|
| 957 |
+
'special.pseudo_huber(delta, r)',
|
| 958 |
+
],
|
| 959 |
+
},
|
| 960 |
+
],
|
| 961 |
+
},
|
| 962 |
+
|
| 963 |
+
{
|
| 964 |
+
'name' : 'Gamma and Related Functions',
|
| 965 |
+
'sub-menu' : [
|
| 966 |
+
|
| 967 |
+
{
|
| 968 |
+
'name' : 'gamma: Gamma function',
|
| 969 |
+
'snippet' : [
|
| 970 |
+
'special.gamma(z)',
|
| 971 |
+
],
|
| 972 |
+
},
|
| 973 |
+
|
| 974 |
+
{
|
| 975 |
+
'name' : 'gammaln: Logarithm of absolute value of gamma function',
|
| 976 |
+
'snippet' : [
|
| 977 |
+
'special.gammaln(z)',
|
| 978 |
+
],
|
| 979 |
+
},
|
| 980 |
+
|
| 981 |
+
{
|
| 982 |
+
'name' : 'gammasgn: Sign of the gamma function',
|
| 983 |
+
'snippet' : [
|
| 984 |
+
'special.gammasgn(x)',
|
| 985 |
+
],
|
| 986 |
+
},
|
| 987 |
+
|
| 988 |
+
{
|
| 989 |
+
'name' : 'gammainc: Incomplete gamma function',
|
| 990 |
+
'snippet' : [
|
| 991 |
+
'special.gammainc(a, x)',
|
| 992 |
+
],
|
| 993 |
+
},
|
| 994 |
+
|
| 995 |
+
{
|
| 996 |
+
'name' : 'gammaincinv: Inverse to gammainc',
|
| 997 |
+
'snippet' : [
|
| 998 |
+
'special.gammaincinv(a, y)',
|
| 999 |
+
],
|
| 1000 |
+
},
|
| 1001 |
+
|
| 1002 |
+
{
|
| 1003 |
+
'name' : 'gammaincc: Complemented incomplete gamma integral',
|
| 1004 |
+
'snippet' : [
|
| 1005 |
+
'special.gammaincc(a,x)',
|
| 1006 |
+
],
|
| 1007 |
+
},
|
| 1008 |
+
|
| 1009 |
+
{
|
| 1010 |
+
'name' : 'gammainccinv: Inverse to gammaincc',
|
| 1011 |
+
'snippet' : [
|
| 1012 |
+
'special.gammainccinv(a,y)',
|
| 1013 |
+
],
|
| 1014 |
+
},
|
| 1015 |
+
|
| 1016 |
+
{
|
| 1017 |
+
'name' : 'beta: Beta function',
|
| 1018 |
+
'snippet' : [
|
| 1019 |
+
'special.beta(a, b)',
|
| 1020 |
+
],
|
| 1021 |
+
},
|
| 1022 |
+
|
| 1023 |
+
{
|
| 1024 |
+
'name' : 'betaln: Natural logarithm of absolute value of beta function',
|
| 1025 |
+
'snippet' : [
|
| 1026 |
+
'special.betaln(a, b)',
|
| 1027 |
+
],
|
| 1028 |
+
},
|
| 1029 |
+
|
| 1030 |
+
{
|
| 1031 |
+
'name' : 'betainc: Incomplete beta integral',
|
| 1032 |
+
'snippet' : [
|
| 1033 |
+
'special.betainc(a, b, x)',
|
| 1034 |
+
],
|
| 1035 |
+
},
|
| 1036 |
+
|
| 1037 |
+
{
|
| 1038 |
+
'name' : 'betaincinv: Inverse function to beta integral',
|
| 1039 |
+
'snippet' : [
|
| 1040 |
+
'special.betaincinv(a, b, y)',
|
| 1041 |
+
],
|
| 1042 |
+
},
|
| 1043 |
+
|
| 1044 |
+
{
|
| 1045 |
+
'name' : 'psi: Digamma function',
|
| 1046 |
+
'snippet' : [
|
| 1047 |
+
'special.psi(z)',
|
| 1048 |
+
],
|
| 1049 |
+
},
|
| 1050 |
+
|
| 1051 |
+
{
|
| 1052 |
+
'name' : 'rgamma: Gamma function inverted',
|
| 1053 |
+
'snippet' : [
|
| 1054 |
+
'special.rgamma(z)',
|
| 1055 |
+
],
|
| 1056 |
+
},
|
| 1057 |
+
|
| 1058 |
+
{
|
| 1059 |
+
'name' : 'polygamma: Polygamma function which is the $n$th derivative of the digamma (psi) function',
|
| 1060 |
+
'snippet' : [
|
| 1061 |
+
'special.polygamma(n, x)',
|
| 1062 |
+
],
|
| 1063 |
+
},
|
| 1064 |
+
|
| 1065 |
+
{
|
| 1066 |
+
'name' : 'multigammaln: Returns the log of multivariate gamma, also sometimes called the generalized gamma',
|
| 1067 |
+
'snippet' : [
|
| 1068 |
+
'special.multigammaln(a, d)',
|
| 1069 |
+
],
|
| 1070 |
+
},
|
| 1071 |
+
|
| 1072 |
+
{
|
| 1073 |
+
'name' : 'digamma: Digamma function',
|
| 1074 |
+
'snippet' : [
|
| 1075 |
+
'special.digamma(z)',
|
| 1076 |
+
],
|
| 1077 |
+
},
|
| 1078 |
+
],
|
| 1079 |
+
},
|
| 1080 |
+
|
| 1081 |
+
{
|
| 1082 |
+
'name' : 'Error Function and Fresnel Integrals',
|
| 1083 |
+
'sub-menu' : [
|
| 1084 |
+
|
| 1085 |
+
{
|
| 1086 |
+
'name' : 'erf: Returns the error function of complex argument',
|
| 1087 |
+
'snippet' : [
|
| 1088 |
+
'special.erf(z)',
|
| 1089 |
+
],
|
| 1090 |
+
},
|
| 1091 |
+
|
| 1092 |
+
{
|
| 1093 |
+
'name' : 'erfc: Complementary error function, $1 - \\mathrm{erf}(x)$',
|
| 1094 |
+
'snippet' : [
|
| 1095 |
+
'special.erfc(x)',
|
| 1096 |
+
],
|
| 1097 |
+
},
|
| 1098 |
+
|
| 1099 |
+
{
|
| 1100 |
+
'name' : 'erfcx: Scaled complementary error function, $\\exp(x^2)\\, \\mathrm{erfc}(x)$',
|
| 1101 |
+
'snippet' : [
|
| 1102 |
+
'special.erfcx(x)',
|
| 1103 |
+
],
|
| 1104 |
+
},
|
| 1105 |
+
|
| 1106 |
+
{
|
| 1107 |
+
'name' : 'erfi: Imaginary error function, $-i\\, \\mathrm{erf}(i\\, z)$',
|
| 1108 |
+
'snippet' : [
|
| 1109 |
+
'special.erfi(z)',
|
| 1110 |
+
],
|
| 1111 |
+
},
|
| 1112 |
+
|
| 1113 |
+
{
|
| 1114 |
+
'name' : 'erfinv: Inverse function for erf',
|
| 1115 |
+
'snippet' : [
|
| 1116 |
+
'special.erfinv(y)',
|
| 1117 |
+
],
|
| 1118 |
+
},
|
| 1119 |
+
|
| 1120 |
+
{
|
| 1121 |
+
'name' : 'erfcinv: Inverse function for erfc',
|
| 1122 |
+
'snippet' : [
|
| 1123 |
+
'special.erfcinv(y)',
|
| 1124 |
+
],
|
| 1125 |
+
},
|
| 1126 |
+
|
| 1127 |
+
{
|
| 1128 |
+
'name' : 'wofz: Faddeeva function',
|
| 1129 |
+
'snippet' : [
|
| 1130 |
+
'special.wofz(z)',
|
| 1131 |
+
],
|
| 1132 |
+
},
|
| 1133 |
+
|
| 1134 |
+
{
|
| 1135 |
+
'name' : 'dawsn: Dawson’s integral',
|
| 1136 |
+
'snippet' : [
|
| 1137 |
+
'special.dawsn(x)',
|
| 1138 |
+
],
|
| 1139 |
+
},
|
| 1140 |
+
|
| 1141 |
+
{
|
| 1142 |
+
'name' : 'fresnel: Fresnel sin and cos integrals',
|
| 1143 |
+
'snippet' : [
|
| 1144 |
+
'special.fresnel(z)',
|
| 1145 |
+
],
|
| 1146 |
+
},
|
| 1147 |
+
|
| 1148 |
+
{
|
| 1149 |
+
'name' : 'fresnel_zeros: Compute nt complex zeros of the sine and cosine Fresnel integrals S(z) and C(z)',
|
| 1150 |
+
'snippet' : [
|
| 1151 |
+
'special.fresnel_zeros(nt)',
|
| 1152 |
+
],
|
| 1153 |
+
},
|
| 1154 |
+
|
| 1155 |
+
{
|
| 1156 |
+
'name' : 'modfresnelp: Modified Fresnel positive integrals',
|
| 1157 |
+
'snippet' : [
|
| 1158 |
+
'special.modfresnelp(x)',
|
| 1159 |
+
],
|
| 1160 |
+
},
|
| 1161 |
+
|
| 1162 |
+
{
|
| 1163 |
+
'name' : 'modfresnelm: Modified Fresnel negative integrals',
|
| 1164 |
+
'snippet' : [
|
| 1165 |
+
'special.modfresnelm(x)',
|
| 1166 |
+
],
|
| 1167 |
+
},
|
| 1168 |
+
|
| 1169 |
+
// These are not universal functions:
|
| 1170 |
+
|
| 1171 |
+
{
|
| 1172 |
+
'name' : 'erf_zeros: Compute nt complex zeros of the error function erf(z)',
|
| 1173 |
+
'snippet' : [
|
| 1174 |
+
'special.erf_zeros(nt)',
|
| 1175 |
+
],
|
| 1176 |
+
},
|
| 1177 |
+
|
| 1178 |
+
{
|
| 1179 |
+
'name' : 'fresnelc_zeros: Compute nt complex zeros of the cosine Fresnel integral C(z)',
|
| 1180 |
+
'snippet' : [
|
| 1181 |
+
'special.fresnelc_zeros(nt)',
|
| 1182 |
+
],
|
| 1183 |
+
},
|
| 1184 |
+
|
| 1185 |
+
{
|
| 1186 |
+
'name' : 'fresnels_zeros: Compute nt complex zeros of the sine Fresnel integral S(z)',
|
| 1187 |
+
'snippet' : [
|
| 1188 |
+
'special.fresnels_zeros(nt)',
|
| 1189 |
+
],
|
| 1190 |
+
},
|
| 1191 |
+
|
| 1192 |
+
],
|
| 1193 |
+
},
|
| 1194 |
+
|
| 1195 |
+
{
|
| 1196 |
+
'name' : 'Legendre Functions',
|
| 1197 |
+
'sub-menu' : [
|
| 1198 |
+
|
| 1199 |
+
{
|
| 1200 |
+
'name' : 'lpmv: Associated legendre function of integer order',
|
| 1201 |
+
'snippet' : [
|
| 1202 |
+
'special.lpmv(m, v, x)',
|
| 1203 |
+
],
|
| 1204 |
+
},
|
| 1205 |
+
|
| 1206 |
+
{
|
| 1207 |
+
'name' : 'sph_harm: Spherical harmonic of degree $n \\geq 0$ and order $|m| \\leq n$',
|
| 1208 |
+
'snippet' : [
|
| 1209 |
+
'# Note: n >= 0 and |m| <= n; azimuthal angle in [0, 2pi) and polar in [0, pi]',
|
| 1210 |
+
'special.sph_harm(order_m, degree_n, azimuthal_angle, polar_angle)',
|
| 1211 |
+
],
|
| 1212 |
+
},
|
| 1213 |
+
|
| 1214 |
+
// These are not universal functions:
|
| 1215 |
+
|
| 1216 |
+
{
|
| 1217 |
+
'name' : 'clpmn: Associated Legendre function of the first kind, $P_{m,n}(z)$',
|
| 1218 |
+
'snippet' : [
|
| 1219 |
+
'special.clpmn(m, n, z[, type])',
|
| 1220 |
+
],
|
| 1221 |
+
},
|
| 1222 |
+
|
| 1223 |
+
{
|
| 1224 |
+
'name' : 'lpn: Compute sequence of Legendre functions of the first kind (polynomials), $P_n(z)$ and derivatives for all degrees from 0 to $n$ (inclusive)',
|
| 1225 |
+
'snippet' : [
|
| 1226 |
+
'special.lpn(n, z)',
|
| 1227 |
+
],
|
| 1228 |
+
},
|
| 1229 |
+
|
| 1230 |
+
{
|
| 1231 |
+
'name' : 'lqn: Compute sequence of Legendre functions of the second kind, $Q_n(z)$ and derivatives for all degrees from 0 to $n$ (inclusive)',
|
| 1232 |
+
'snippet' : [
|
| 1233 |
+
'special.lqn(n, z)',
|
| 1234 |
+
],
|
| 1235 |
+
},
|
| 1236 |
+
|
| 1237 |
+
{
|
| 1238 |
+
'name' : 'lpmn: Associated Legendre function of the first kind, $P_{m,n}(z)$',
|
| 1239 |
+
'snippet' : [
|
| 1240 |
+
'special.lpmn(m, n, z)',
|
| 1241 |
+
],
|
| 1242 |
+
},
|
| 1243 |
+
|
| 1244 |
+
{
|
| 1245 |
+
'name' : 'lqmn: Associated Legendre functions of the second kind, $Q_{m,n}(z)$ and its derivative, $Q_{m,n}\'(z)$ of order $m$ and degree $n$',
|
| 1246 |
+
'snippet' : [
|
| 1247 |
+
'special.lqmn(m, n, z)',
|
| 1248 |
+
],
|
| 1249 |
+
},
|
| 1250 |
+
|
| 1251 |
+
],
|
| 1252 |
+
},
|
| 1253 |
+
|
| 1254 |
+
{
|
| 1255 |
+
'name' : 'Ellipsoidal Harmonics',
|
| 1256 |
+
'sub-menu' : [
|
| 1257 |
+
{
|
| 1258 |
+
'name' : 'ellip_harm: Ellipsoidal harmonic functions $E^p_n(l)$',
|
| 1259 |
+
'snippet' : [
|
| 1260 |
+
'special.ellip_harm(h2, k2, n, p, s[, signm, signn])',
|
| 1261 |
+
],
|
| 1262 |
+
},
|
| 1263 |
+
|
| 1264 |
+
{
|
| 1265 |
+
'name' : 'ellip_harm_2: Ellipsoidal harmonic functions $F^p_n(l)$',
|
| 1266 |
+
'snippet' : [
|
| 1267 |
+
'special.ellip_harm_2(h2, k2, n, p, s)',
|
| 1268 |
+
],
|
| 1269 |
+
},
|
| 1270 |
+
|
| 1271 |
+
{
|
| 1272 |
+
'name' : 'ellip_normal: Ellipsoidal harmonic normalization constants $\\gamma^p_n$',
|
| 1273 |
+
'snippet' : [
|
| 1274 |
+
'special.ellip_normal(h2, k2, n, p)',
|
| 1275 |
+
],
|
| 1276 |
+
},
|
| 1277 |
+
],
|
| 1278 |
+
},
|
| 1279 |
+
|
| 1280 |
+
{
|
| 1281 |
+
'name' : 'Orthogonal polynomials',
|
| 1282 |
+
'sub-menu' : [
|
| 1283 |
+
|
| 1284 |
+
// The following functions evaluate values of orthogonal polynomials:
|
| 1285 |
+
{
|
| 1286 |
+
'name' : 'assoc_laguerre: Returns the $n$th order generalized (associated) Laguerre polynomial.',
|
| 1287 |
+
'snippet' : [
|
| 1288 |
+
'special.assoc_laguerre(x, n)',
|
| 1289 |
+
],
|
| 1290 |
+
},
|
| 1291 |
+
|
| 1292 |
+
{
|
| 1293 |
+
'name' : 'eval_legendre: Evaluate Legendre polynomial at a point',
|
| 1294 |
+
'snippet' : [
|
| 1295 |
+
'special.eval_legendre(n, x)',
|
| 1296 |
+
],
|
| 1297 |
+
},
|
| 1298 |
+
|
| 1299 |
+
{
|
| 1300 |
+
'name' : 'eval_chebyt: Evaluate Chebyshev $T$ polynomial at a point',
|
| 1301 |
+
'snippet' : [
|
| 1302 |
+
'special.eval_chebyt(n, x)',
|
| 1303 |
+
],
|
| 1304 |
+
},
|
| 1305 |
+
|
| 1306 |
+
{
|
| 1307 |
+
'name' : 'eval_chebyu: Evaluate Chebyshev $U$ polynomial at a point',
|
| 1308 |
+
'snippet' : [
|
| 1309 |
+
'special.eval_chebyu(n, x)',
|
| 1310 |
+
],
|
| 1311 |
+
},
|
| 1312 |
+
|
| 1313 |
+
{
|
| 1314 |
+
'name' : 'eval_chebyc: Evaluate Chebyshev $C$ polynomial at a point',
|
| 1315 |
+
'snippet' : [
|
| 1316 |
+
'special.eval_chebyc(n, x)',
|
| 1317 |
+
],
|
| 1318 |
+
},
|
| 1319 |
+
|
| 1320 |
+
{
|
| 1321 |
+
'name' : 'eval_chebys: Evaluate Chebyshev $S$ polynomial at a point',
|
| 1322 |
+
'snippet' : [
|
| 1323 |
+
'special.eval_chebys(n, x)',
|
| 1324 |
+
],
|
| 1325 |
+
},
|
| 1326 |
+
|
| 1327 |
+
{
|
| 1328 |
+
'name' : 'eval_jacobi: Evaluate Jacobi polynomial at a point',
|
| 1329 |
+
'snippet' : [
|
| 1330 |
+
'special.eval_jacobi(n, alpha, beta, x)',
|
| 1331 |
+
],
|
| 1332 |
+
},
|
| 1333 |
+
|
| 1334 |
+
{
|
| 1335 |
+
'name' : 'eval_laguerre: Evaluate Laguerre polynomial at a point',
|
| 1336 |
+
'snippet' : [
|
| 1337 |
+
'special.eval_laguerre(n, x)',
|
| 1338 |
+
],
|
| 1339 |
+
},
|
| 1340 |
+
|
| 1341 |
+
{
|
| 1342 |
+
'name' : 'eval_genlaguerre: Evaluate generalized Laguerre polynomial at a point',
|
| 1343 |
+
'snippet' : [
|
| 1344 |
+
'special.eval_genlaguerre(n, alpha, x)',
|
| 1345 |
+
],
|
| 1346 |
+
},
|
| 1347 |
+
|
| 1348 |
+
{
|
| 1349 |
+
'name' : 'eval_hermite: Evaluate Hermite polynomial at a point',
|
| 1350 |
+
'snippet' : [
|
| 1351 |
+
'special.eval_hermite(n, x)',
|
| 1352 |
+
],
|
| 1353 |
+
},
|
| 1354 |
+
|
| 1355 |
+
{
|
| 1356 |
+
'name' : 'eval_hermitenorm: Evaluate normalized Hermite polynomial at a point',
|
| 1357 |
+
'snippet' : [
|
| 1358 |
+
'special.eval_hermitenorm(n, x)',
|
| 1359 |
+
],
|
| 1360 |
+
},
|
| 1361 |
+
|
| 1362 |
+
{
|
| 1363 |
+
'name' : 'eval_gegenbauer: Evaluate Gegenbauer polynomial at a point',
|
| 1364 |
+
'snippet' : [
|
| 1365 |
+
'special.eval_gegenbauer(n, alpha, x)',
|
| 1366 |
+
],
|
| 1367 |
+
},
|
| 1368 |
+
|
| 1369 |
+
{
|
| 1370 |
+
'name' : 'eval_sh_legendre: Evaluate shifted Legendre polynomial at a point',
|
| 1371 |
+
'snippet' : [
|
| 1372 |
+
'special.eval_sh_legendre(n, x)',
|
| 1373 |
+
],
|
| 1374 |
+
},
|
| 1375 |
+
|
| 1376 |
+
{
|
| 1377 |
+
'name' : 'eval_sh_chebyt: Evaluate shifted Chebyshev $T$ polynomial at a point',
|
| 1378 |
+
'snippet' : [
|
| 1379 |
+
'special.eval_sh_chebyt(n, x)',
|
| 1380 |
+
],
|
| 1381 |
+
},
|
| 1382 |
+
|
| 1383 |
+
{
|
| 1384 |
+
'name' : 'eval_sh_chebyu: Evaluate shifted Chebyshev $U$ polynomial at a point',
|
| 1385 |
+
'snippet' : [
|
| 1386 |
+
'special.eval_sh_chebyu(n, x)',
|
| 1387 |
+
],
|
| 1388 |
+
},
|
| 1389 |
+
|
| 1390 |
+
{
|
| 1391 |
+
'name' : 'eval_sh_jacobi: Evaluate shifted Jacobi polynomial at a point',
|
| 1392 |
+
'snippet' : [
|
| 1393 |
+
'special.eval_sh_jacobi(n, p, q, x)',
|
| 1394 |
+
],
|
| 1395 |
+
},
|
| 1396 |
+
|
| 1397 |
+
{
|
| 1398 |
+
'name' : 'legendre: Coefficients of the $n$th order Legendre polynomial, $P_n(x)$',
|
| 1399 |
+
'snippet' : [
|
| 1400 |
+
'special.legendre(n[, monic])',
|
| 1401 |
+
],
|
| 1402 |
+
},
|
| 1403 |
+
|
| 1404 |
+
{
|
| 1405 |
+
'name' : 'chebyt: Coefficients of the $n$th order Chebyshev polynomial of first kind, $T_n(x)$',
|
| 1406 |
+
'snippet' : [
|
| 1407 |
+
'special.chebyt(n[, monic])',
|
| 1408 |
+
],
|
| 1409 |
+
},
|
| 1410 |
+
|
| 1411 |
+
{
|
| 1412 |
+
'name' : 'chebyu: Coefficients of the $n$th order Chebyshev polynomial of second kind, $U_n(x)$',
|
| 1413 |
+
'snippet' : [
|
| 1414 |
+
'special.chebyu(n[, monic])',
|
| 1415 |
+
],
|
| 1416 |
+
},
|
| 1417 |
+
|
| 1418 |
+
{
|
| 1419 |
+
'name' : 'chebyc: Coefficients of the $n$th order Chebyshev polynomial of first kind, $C_n(x)$',
|
| 1420 |
+
'snippet' : [
|
| 1421 |
+
'special.chebyc(n[, monic])',
|
| 1422 |
+
],
|
| 1423 |
+
},
|
| 1424 |
+
|
| 1425 |
+
{
|
| 1426 |
+
'name' : 'chebys: Coefficients of the $n$th order Chebyshev polynomial of second kind, $S_n$(x)',
|
| 1427 |
+
'snippet' : [
|
| 1428 |
+
'special.chebys(n[, monic])',
|
| 1429 |
+
],
|
| 1430 |
+
},
|
| 1431 |
+
|
| 1432 |
+
{
|
| 1433 |
+
'name' : 'jacobi: Coefficients of the $n$th order Jacobi polynomial, $P^(\\alpha,\\beta)_n(x)$ orthogonal over [-1,1] with weighting function $(1-x)^\\alpha (1+x)^\\beta$ with $\\alpha,\\beta > -1$',
|
| 1434 |
+
'snippet' : [
|
| 1435 |
+
'special.jacobi(n, alpha, beta[, monic])',
|
| 1436 |
+
],
|
| 1437 |
+
},
|
| 1438 |
+
|
| 1439 |
+
{
|
| 1440 |
+
'name' : 'laguerre: Coefficients of the $n$th order Laguerre polynoimal, $L_n(x)$',
|
| 1441 |
+
'snippet' : [
|
| 1442 |
+
'special.laguerre(n[, monic])',
|
| 1443 |
+
],
|
| 1444 |
+
},
|
| 1445 |
+
|
| 1446 |
+
{
|
| 1447 |
+
'name' : 'genlaguerre: Coefficients of the $n$th order generalized (associated) Laguerre polynomial,',
|
| 1448 |
+
'snippet' : [
|
| 1449 |
+
'special.genlaguerre(n, alpha[, monic])',
|
| 1450 |
+
],
|
| 1451 |
+
},
|
| 1452 |
+
|
| 1453 |
+
{
|
| 1454 |
+
'name' : 'hermite: Coefficients of the $n$th order Hermite polynomial, $H_n(x)$, orthogonal over',
|
| 1455 |
+
'snippet' : [
|
| 1456 |
+
'special.hermite(n[, monic])',
|
| 1457 |
+
],
|
| 1458 |
+
},
|
| 1459 |
+
|
| 1460 |
+
{
|
| 1461 |
+
'name' : 'hermitenorm: Coefficients of the $n$th order normalized Hermite polynomial, $He_n(x)$, orthogonal',
|
| 1462 |
+
'snippet' : [
|
| 1463 |
+
'special.hermitenorm(n[, monic])',
|
| 1464 |
+
],
|
| 1465 |
+
},
|
| 1466 |
+
|
| 1467 |
+
{
|
| 1468 |
+
'name' : 'gegenbauer: Coefficients of the $n$th order Gegenbauer (ultraspherical) polynomial,',
|
| 1469 |
+
'snippet' : [
|
| 1470 |
+
'special.gegenbauer(n, alpha[, monic])',
|
| 1471 |
+
],
|
| 1472 |
+
},
|
| 1473 |
+
|
| 1474 |
+
{
|
| 1475 |
+
'name' : 'sh_legendre: Coefficients of the $n$th order shifted Legendre polynomial, $P^\\ast_n(x)$',
|
| 1476 |
+
'snippet' : [
|
| 1477 |
+
'special.sh_legendre(n[, monic])',
|
| 1478 |
+
],
|
| 1479 |
+
},
|
| 1480 |
+
|
| 1481 |
+
{
|
| 1482 |
+
'name' : 'sh_chebyt: Coefficients of $n$th order shifted Chebyshev polynomial of first kind, $T_n(x)$',
|
| 1483 |
+
'snippet' : [
|
| 1484 |
+
'special.sh_chebyt(n[, monic])',
|
| 1485 |
+
],
|
| 1486 |
+
},
|
| 1487 |
+
|
| 1488 |
+
{
|
| 1489 |
+
'name' : 'sh_chebyu: Coefficients of the $n$th order shifted Chebyshev polynomial of second kind, $U_n(x)$',
|
| 1490 |
+
'snippet' : [
|
| 1491 |
+
'special.sh_chebyu(n[, monic])',
|
| 1492 |
+
],
|
| 1493 |
+
},
|
| 1494 |
+
|
| 1495 |
+
{
|
| 1496 |
+
'name' : 'sh_jacobi: Coefficients of the $n$th order Jacobi polynomial, $G_n(p,q,x)$ orthogonal over [0,1] with weighting function $(1-x)^{p-q} x^{q-1}$ with $p>q-1$ and $q > 0$',
|
| 1497 |
+
'snippet' : [
|
| 1498 |
+
'special.sh_jacobi(n, p, q[, monic])',
|
| 1499 |
+
],
|
| 1500 |
+
},
|
| 1501 |
+
|
| 1502 |
+
],
|
| 1503 |
+
},
|
| 1504 |
+
|
| 1505 |
+
{
|
| 1506 |
+
'name' : 'Hypergeometric Functions',
|
| 1507 |
+
'sub-menu' : [
|
| 1508 |
+
|
| 1509 |
+
{
|
| 1510 |
+
'name' : 'hyp2f1: Gauss hypergeometric function ${}_2F_1(a, b; c; z)$',
|
| 1511 |
+
'snippet' : [
|
| 1512 |
+
'special.hyp2f1(a, b, c, z)',
|
| 1513 |
+
],
|
| 1514 |
+
},
|
| 1515 |
+
|
| 1516 |
+
{
|
| 1517 |
+
'name' : 'hyp1f1: Confluent hypergeometric function ${}_1F_1(a, b; x)$',
|
| 1518 |
+
'snippet' : [
|
| 1519 |
+
'special.hyp1f1(a, b, x)',
|
| 1520 |
+
],
|
| 1521 |
+
},
|
| 1522 |
+
|
| 1523 |
+
{
|
| 1524 |
+
'name' : 'hyperu: Confluent hypergeometric function $U(a, b, x)$ of the second kind',
|
| 1525 |
+
'snippet' : [
|
| 1526 |
+
'special.hyperu(a, b, x)',
|
| 1527 |
+
],
|
| 1528 |
+
},
|
| 1529 |
+
|
| 1530 |
+
{
|
| 1531 |
+
'name' : 'hyp0f1: Confluent hypergeometric limit function ${}_0F_1$',
|
| 1532 |
+
'snippet' : [
|
| 1533 |
+
'special.hyp0f1(v, z)',
|
| 1534 |
+
],
|
| 1535 |
+
},
|
| 1536 |
+
|
| 1537 |
+
{
|
| 1538 |
+
'name' : 'hyp2f0: Hypergeometric function ${}_2F_0$ in $y$ and an error estimate',
|
| 1539 |
+
'snippet' : [
|
| 1540 |
+
'special.hyp2f0(a, b, x, type)',
|
| 1541 |
+
],
|
| 1542 |
+
},
|
| 1543 |
+
|
| 1544 |
+
{
|
| 1545 |
+
'name' : 'hyp1f2: Hypergeometric function ${}_1F_2$ and error estimate',
|
| 1546 |
+
'snippet' : [
|
| 1547 |
+
'special.hyp1f2(a, b, c, x)',
|
| 1548 |
+
],
|
| 1549 |
+
},
|
| 1550 |
+
|
| 1551 |
+
{
|
| 1552 |
+
'name' : 'hyp3f0: Hypergeometric function ${}_3F_0$ in $y$ and an error estimate',
|
| 1553 |
+
'snippet' : [
|
| 1554 |
+
'special.hyp3f0(a, b, c, x)',
|
| 1555 |
+
],
|
| 1556 |
+
},
|
| 1557 |
+
|
| 1558 |
+
],
|
| 1559 |
+
},
|
| 1560 |
+
|
| 1561 |
+
{
|
| 1562 |
+
'name' : 'Parabolic Cylinder Functions',
|
| 1563 |
+
'sub-menu' : [
|
| 1564 |
+
|
| 1565 |
+
{
|
| 1566 |
+
'name' : 'pbdv: Parabolic cylinder function $D$',
|
| 1567 |
+
'snippet' : [
|
| 1568 |
+
'special.pbdv(v, x)',
|
| 1569 |
+
],
|
| 1570 |
+
},
|
| 1571 |
+
|
| 1572 |
+
{
|
| 1573 |
+
'name' : 'pbvv: Parabolic cylinder function $V$',
|
| 1574 |
+
'snippet' : [
|
| 1575 |
+
'special.pbvv(v,x)',
|
| 1576 |
+
],
|
| 1577 |
+
},
|
| 1578 |
+
|
| 1579 |
+
{
|
| 1580 |
+
'name' : 'pbwa: Parabolic cylinder function $W$',
|
| 1581 |
+
'snippet' : [
|
| 1582 |
+
'special.pbwa(a,x)',
|
| 1583 |
+
],
|
| 1584 |
+
},
|
| 1585 |
+
|
| 1586 |
+
// These are not universal functions:
|
| 1587 |
+
|
| 1588 |
+
{
|
| 1589 |
+
'name' : 'pbdv_seq: $D_{v_0}(x), ..., D_v(x)$ and $D_{v_0}\'(x), ..., D_v\'(x)$ with $v_0=v-\\lfloor v \\rfloor$',
|
| 1590 |
+
'snippet' : [
|
| 1591 |
+
'special.pbdv_seq(v, x)',
|
| 1592 |
+
],
|
| 1593 |
+
},
|
| 1594 |
+
|
| 1595 |
+
{
|
| 1596 |
+
'name' : 'pbvv_seq: $V_{v_0}(x), ..., V_v(x)$ and $V_{v_0}\'(x), ..., V_v\'(x)$ with $v_0=v-\\lfloor v \\rfloor$',
|
| 1597 |
+
'snippet' : [
|
| 1598 |
+
'special.pbvv_seq(v, x)',
|
| 1599 |
+
],
|
| 1600 |
+
},
|
| 1601 |
+
|
| 1602 |
+
{
|
| 1603 |
+
'name' : 'pbdn_seq: $D_0(x), ..., D_n(x)$ and $D_0\'(x), ..., D_n\'(x)$',
|
| 1604 |
+
'snippet' : [
|
| 1605 |
+
'special.pbdn_seq(n, z)',
|
| 1606 |
+
],
|
| 1607 |
+
},
|
| 1608 |
+
|
| 1609 |
+
],
|
| 1610 |
+
},
|
| 1611 |
+
|
| 1612 |
+
{
|
| 1613 |
+
'name' : 'Mathieu and Related Functions',
|
| 1614 |
+
'sub-menu' : [
|
| 1615 |
+
|
| 1616 |
+
{
|
| 1617 |
+
'name' : 'mathieu_a: Characteristic value of even Mathieu functions',
|
| 1618 |
+
'snippet' : [
|
| 1619 |
+
'special.mathieu_a(m,q)',
|
| 1620 |
+
],
|
| 1621 |
+
},
|
| 1622 |
+
|
| 1623 |
+
{
|
| 1624 |
+
'name' : 'mathieu_b: Characteristic value of odd Mathieu functions',
|
| 1625 |
+
'snippet' : [
|
| 1626 |
+
'special.mathieu_b(m,q)',
|
| 1627 |
+
],
|
| 1628 |
+
},
|
| 1629 |
+
|
| 1630 |
+
// These are not universal functions:
|
| 1631 |
+
|
| 1632 |
+
{
|
| 1633 |
+
'name' : 'mathieu_even_coef: Compute expansion coefficients for even Mathieu functions and modified Mathieu functions',
|
| 1634 |
+
'snippet' : [
|
| 1635 |
+
'special.mathieu_even_coef(m, q)',
|
| 1636 |
+
],
|
| 1637 |
+
},
|
| 1638 |
+
|
| 1639 |
+
{
|
| 1640 |
+
'name' : 'mathieu_odd_coef: Compute expansion coefficients for even Mathieu functions and modified Mathieu functions',
|
| 1641 |
+
'snippet' : [
|
| 1642 |
+
'special.mathieu_odd_coef(m, q)',
|
| 1643 |
+
],
|
| 1644 |
+
},
|
| 1645 |
+
|
| 1646 |
+
// The following return both function and first derivative:
|
| 1647 |
+
|
| 1648 |
+
{
|
| 1649 |
+
'name' : 'mathieu_cem: Even Mathieu function and its derivative',
|
| 1650 |
+
'snippet' : [
|
| 1651 |
+
'special.mathieu_cem(m,q,x)',
|
| 1652 |
+
],
|
| 1653 |
+
},
|
| 1654 |
+
|
| 1655 |
+
{
|
| 1656 |
+
'name' : 'mathieu_sem: Odd Mathieu function and its derivative',
|
| 1657 |
+
'snippet' : [
|
| 1658 |
+
'special.mathieu_sem(m, q, x)',
|
| 1659 |
+
],
|
| 1660 |
+
},
|
| 1661 |
+
|
| 1662 |
+
{
|
| 1663 |
+
'name' : 'mathieu_modcem1: Even modified Mathieu function of the first kind and its derivative',
|
| 1664 |
+
'snippet' : [
|
| 1665 |
+
'special.mathieu_modcem1(m, q, x)',
|
| 1666 |
+
],
|
| 1667 |
+
},
|
| 1668 |
+
|
| 1669 |
+
{
|
| 1670 |
+
'name' : 'mathieu_modcem2: Even modified Mathieu function of the second kind and its derivative',
|
| 1671 |
+
'snippet' : [
|
| 1672 |
+
'special.mathieu_modcem2(m, q, x)',
|
| 1673 |
+
],
|
| 1674 |
+
},
|
| 1675 |
+
|
| 1676 |
+
{
|
| 1677 |
+
'name' : 'mathieu_modsem1: Odd modified Mathieu function of the first kind and its derivative',
|
| 1678 |
+
'snippet' : [
|
| 1679 |
+
'special.mathieu_modsem1(m,q,x)',
|
| 1680 |
+
],
|
| 1681 |
+
},
|
| 1682 |
+
|
| 1683 |
+
{
|
| 1684 |
+
'name' : 'mathieu_modsem2: Odd modified Mathieu function of the second kind and its derivative',
|
| 1685 |
+
'snippet' : [
|
| 1686 |
+
'special.mathieu_modsem2(m, q, x)',
|
| 1687 |
+
],
|
| 1688 |
+
},
|
| 1689 |
+
|
| 1690 |
+
],
|
| 1691 |
+
},
|
| 1692 |
+
|
| 1693 |
+
{
|
| 1694 |
+
'name' : 'Spheroidal Wave Functions',
|
| 1695 |
+
'sub-menu' : [
|
| 1696 |
+
|
| 1697 |
+
{
|
| 1698 |
+
'name' : 'pro_ang1: Prolate spheroidal angular function of the first kind and its derivative',
|
| 1699 |
+
'snippet' : [
|
| 1700 |
+
'special.pro_ang1(m,n,c,x)',
|
| 1701 |
+
],
|
| 1702 |
+
},
|
| 1703 |
+
|
| 1704 |
+
{
|
| 1705 |
+
'name' : 'pro_rad1: Prolate spheroidal radial function of the first kind and its derivative',
|
| 1706 |
+
'snippet' : [
|
| 1707 |
+
'special.pro_rad1(m,n,c,x)',
|
| 1708 |
+
],
|
| 1709 |
+
},
|
| 1710 |
+
|
| 1711 |
+
{
|
| 1712 |
+
'name' : 'pro_rad2: Prolate spheroidal radial function of the secon kind and its derivative',
|
| 1713 |
+
'snippet' : [
|
| 1714 |
+
'special.pro_rad2(m,n,c,x)',
|
| 1715 |
+
],
|
| 1716 |
+
},
|
| 1717 |
+
|
| 1718 |
+
{
|
| 1719 |
+
'name' : 'obl_ang1: Oblate spheroidal angular function of the first kind and its derivative',
|
| 1720 |
+
'snippet' : [
|
| 1721 |
+
'special.obl_ang1(m, n, c, x)',
|
| 1722 |
+
],
|
| 1723 |
+
},
|
| 1724 |
+
|
| 1725 |
+
{
|
| 1726 |
+
'name' : 'obl_rad1: Oblate spheroidal radial function of the first kind and its derivative',
|
| 1727 |
+
'snippet' : [
|
| 1728 |
+
'special.obl_rad1(m,n,c,x)',
|
| 1729 |
+
],
|
| 1730 |
+
},
|
| 1731 |
+
|
| 1732 |
+
{
|
| 1733 |
+
'name' : 'obl_rad2: Oblate spheroidal radial function of the second kind and its derivative',
|
| 1734 |
+
'snippet' : [
|
| 1735 |
+
'special.obl_rad2(m,n,c,x)',
|
| 1736 |
+
],
|
| 1737 |
+
},
|
| 1738 |
+
|
| 1739 |
+
{
|
| 1740 |
+
'name' : 'pro_cv: Characteristic value of prolate spheroidal function',
|
| 1741 |
+
'snippet' : [
|
| 1742 |
+
'special.pro_cv(m,n,c)',
|
| 1743 |
+
],
|
| 1744 |
+
},
|
| 1745 |
+
|
| 1746 |
+
{
|
| 1747 |
+
'name' : 'obl_cv: Characteristic value of oblate spheroidal function',
|
| 1748 |
+
'snippet' : [
|
| 1749 |
+
'special.obl_cv(m, n, c)',
|
| 1750 |
+
],
|
| 1751 |
+
},
|
| 1752 |
+
|
| 1753 |
+
{
|
| 1754 |
+
'name' : 'pro_cv_seq: Compute a sequence of characteristic values for the prolate spheroidal wave functions for mode m and n’=m..n and spheroidal parameter c',
|
| 1755 |
+
'snippet' : [
|
| 1756 |
+
'special.pro_cv_seq(m, n, c)',
|
| 1757 |
+
],
|
| 1758 |
+
},
|
| 1759 |
+
|
| 1760 |
+
{
|
| 1761 |
+
'name' : 'obl_cv_seq: Compute a sequence of characteristic values for the oblate spheroidal wave functions for mode m and n’=m..n and spheroidal parameter c',
|
| 1762 |
+
'snippet' : [
|
| 1763 |
+
'special.obl_cv_seq(m, n, c)',
|
| 1764 |
+
],
|
| 1765 |
+
},
|
| 1766 |
+
|
| 1767 |
+
// The following functions require pre-computed characteristic value:
|
| 1768 |
+
|
| 1769 |
+
{
|
| 1770 |
+
'name' : 'pro_ang1_cv: Prolate spheroidal angular function pro_ang1 for precomputed characteristic value',
|
| 1771 |
+
'snippet' : [
|
| 1772 |
+
'special.pro_ang1_cv(m,n,c,cv,x)',
|
| 1773 |
+
],
|
| 1774 |
+
},
|
| 1775 |
+
|
| 1776 |
+
{
|
| 1777 |
+
'name' : 'pro_rad1_cv: Prolate spheroidal radial function pro_rad1 for precomputed characteristic value',
|
| 1778 |
+
'snippet' : [
|
| 1779 |
+
'special.pro_rad1_cv(m,n,c,cv,x)',
|
| 1780 |
+
],
|
| 1781 |
+
},
|
| 1782 |
+
|
| 1783 |
+
{
|
| 1784 |
+
'name' : 'pro_rad2_cv: Prolate spheroidal radial function pro_rad2 for precomputed characteristic value',
|
| 1785 |
+
'snippet' : [
|
| 1786 |
+
'special.pro_rad2_cv(m,n,c,cv,x)',
|
| 1787 |
+
],
|
| 1788 |
+
},
|
| 1789 |
+
|
| 1790 |
+
{
|
| 1791 |
+
'name' : 'obl_ang1_cv: Oblate spheroidal angular function obl_ang1 for precomputed characteristic value',
|
| 1792 |
+
'snippet' : [
|
| 1793 |
+
'special.obl_ang1_cv(m, n, c, cv, x)',
|
| 1794 |
+
],
|
| 1795 |
+
},
|
| 1796 |
+
|
| 1797 |
+
{
|
| 1798 |
+
'name' : 'obl_rad1_cv: Oblate spheroidal radial function obl_rad1 for precomputed characteristic value',
|
| 1799 |
+
'snippet' : [
|
| 1800 |
+
'special.obl_rad1_cv(m,n,c,cv,x)',
|
| 1801 |
+
],
|
| 1802 |
+
},
|
| 1803 |
+
|
| 1804 |
+
{
|
| 1805 |
+
'name' : 'obl_rad2_cv: Oblate spheroidal radial function obl_rad2 for precomputed characteristic value',
|
| 1806 |
+
'snippet' : [
|
| 1807 |
+
'special.obl_rad2_cv(m,n,c,cv,x)',
|
| 1808 |
+
],
|
| 1809 |
+
},
|
| 1810 |
+
|
| 1811 |
+
],
|
| 1812 |
+
},
|
| 1813 |
+
|
| 1814 |
+
{
|
| 1815 |
+
'name' : 'Kelvin Functions',
|
| 1816 |
+
'sub-menu' : [
|
| 1817 |
+
|
| 1818 |
+
{
|
| 1819 |
+
'name' : 'kelvin: Kelvin functions as complex numbers',
|
| 1820 |
+
'snippet' : [
|
| 1821 |
+
'special.kelvin(x)',
|
| 1822 |
+
],
|
| 1823 |
+
},
|
| 1824 |
+
|
| 1825 |
+
{
|
| 1826 |
+
'name' : 'kelvin_zeros: Compute nt zeros of all the Kelvin functions returned in a length 8 tuple of arrays of length nt',
|
| 1827 |
+
'snippet' : [
|
| 1828 |
+
'special.kelvin_zeros(nt)',
|
| 1829 |
+
],
|
| 1830 |
+
},
|
| 1831 |
+
|
| 1832 |
+
{
|
| 1833 |
+
'name' : 'ber: Kelvin function ber',
|
| 1834 |
+
'snippet' : [
|
| 1835 |
+
'special.ber(x)',
|
| 1836 |
+
],
|
| 1837 |
+
},
|
| 1838 |
+
|
| 1839 |
+
{
|
| 1840 |
+
'name' : 'bei: Kelvin function bei',
|
| 1841 |
+
'snippet' : [
|
| 1842 |
+
'special.bei(x)',
|
| 1843 |
+
],
|
| 1844 |
+
},
|
| 1845 |
+
|
| 1846 |
+
{
|
| 1847 |
+
'name' : 'berp: Derivative of the Kelvin function ber',
|
| 1848 |
+
'snippet' : [
|
| 1849 |
+
'special.berp(x)',
|
| 1850 |
+
],
|
| 1851 |
+
},
|
| 1852 |
+
|
| 1853 |
+
{
|
| 1854 |
+
'name' : 'beip: Derivative of the Kelvin function bei',
|
| 1855 |
+
'snippet' : [
|
| 1856 |
+
'special.beip(x)',
|
| 1857 |
+
],
|
| 1858 |
+
},
|
| 1859 |
+
|
| 1860 |
+
{
|
| 1861 |
+
'name' : 'ker: Kelvin function ker',
|
| 1862 |
+
'snippet' : [
|
| 1863 |
+
'special.ker(x)',
|
| 1864 |
+
],
|
| 1865 |
+
},
|
| 1866 |
+
|
| 1867 |
+
{
|
| 1868 |
+
'name' : 'kei: Kelvin function ker',
|
| 1869 |
+
'snippet' : [
|
| 1870 |
+
'special.kei(x)',
|
| 1871 |
+
],
|
| 1872 |
+
},
|
| 1873 |
+
|
| 1874 |
+
{
|
| 1875 |
+
'name' : 'kerp: Derivative of the Kelvin function ker',
|
| 1876 |
+
'snippet' : [
|
| 1877 |
+
'special.kerp(x)',
|
| 1878 |
+
],
|
| 1879 |
+
},
|
| 1880 |
+
|
| 1881 |
+
{
|
| 1882 |
+
'name' : 'keip: Derivative of the Kelvin function kei',
|
| 1883 |
+
'snippet' : [
|
| 1884 |
+
'special.keip(x)',
|
| 1885 |
+
],
|
| 1886 |
+
},
|
| 1887 |
+
|
| 1888 |
+
// These are not universal functions:
|
| 1889 |
+
|
| 1890 |
+
{
|
| 1891 |
+
'name' : 'ber_zeros: Compute nt zeros of the Kelvin function ber x',
|
| 1892 |
+
'snippet' : [
|
| 1893 |
+
'special.ber_zeros(nt)',
|
| 1894 |
+
],
|
| 1895 |
+
},
|
| 1896 |
+
|
| 1897 |
+
{
|
| 1898 |
+
'name' : 'bei_zeros: Compute nt zeros of the Kelvin function bei x',
|
| 1899 |
+
'snippet' : [
|
| 1900 |
+
'special.bei_zeros(nt)',
|
| 1901 |
+
],
|
| 1902 |
+
},
|
| 1903 |
+
|
| 1904 |
+
{
|
| 1905 |
+
'name' : 'berp_zeros: Compute nt zeros of the Kelvin function ber’ x',
|
| 1906 |
+
'snippet' : [
|
| 1907 |
+
'special.berp_zeros(nt)',
|
| 1908 |
+
],
|
| 1909 |
+
},
|
| 1910 |
+
|
| 1911 |
+
{
|
| 1912 |
+
'name' : 'beip_zeros: Compute nt zeros of the Kelvin function bei’ x',
|
| 1913 |
+
'snippet' : [
|
| 1914 |
+
'special.beip_zeros(nt)',
|
| 1915 |
+
],
|
| 1916 |
+
},
|
| 1917 |
+
|
| 1918 |
+
{
|
| 1919 |
+
'name' : 'ker_zeros: Compute nt zeros of the Kelvin function ker x',
|
| 1920 |
+
'snippet' : [
|
| 1921 |
+
'special.ker_zeros(nt)',
|
| 1922 |
+
],
|
| 1923 |
+
},
|
| 1924 |
+
|
| 1925 |
+
{
|
| 1926 |
+
'name' : 'kei_zeros: Compute nt zeros of the Kelvin function kei x',
|
| 1927 |
+
'snippet' : [
|
| 1928 |
+
'special.kei_zeros(nt)',
|
| 1929 |
+
],
|
| 1930 |
+
},
|
| 1931 |
+
|
| 1932 |
+
{
|
| 1933 |
+
'name' : 'kerp_zeros: Compute nt zeros of the Kelvin function ker’ x',
|
| 1934 |
+
'snippet' : [
|
| 1935 |
+
'special.kerp_zeros(nt)',
|
| 1936 |
+
],
|
| 1937 |
+
},
|
| 1938 |
+
|
| 1939 |
+
{
|
| 1940 |
+
'name' : 'keip_zeros: Compute nt zeros of the Kelvin function kei’ x',
|
| 1941 |
+
'snippet' : [
|
| 1942 |
+
'special.keip_zeros(nt)',
|
| 1943 |
+
],
|
| 1944 |
+
},
|
| 1945 |
+
|
| 1946 |
+
],
|
| 1947 |
+
},
|
| 1948 |
+
|
| 1949 |
+
{
|
| 1950 |
+
'name' : 'Combinatorics',
|
| 1951 |
+
'sub-menu' : [
|
| 1952 |
+
{
|
| 1953 |
+
'name' : 'comb: The number of combinations of N things taken k at a time',
|
| 1954 |
+
'snippet' : [
|
| 1955 |
+
'special.comb(N, k, exact=False, repetition=False)',
|
| 1956 |
+
],
|
| 1957 |
+
},
|
| 1958 |
+
|
| 1959 |
+
{
|
| 1960 |
+
'name' : 'perm: Permutations of N things taken k at a time, i.e., k-permutations of N',
|
| 1961 |
+
'snippet' : [
|
| 1962 |
+
'special.perm(N, k, exact=False)',
|
| 1963 |
+
],
|
| 1964 |
+
},
|
| 1965 |
+
],
|
| 1966 |
+
},
|
| 1967 |
+
|
| 1968 |
+
{
|
| 1969 |
+
'name' : 'Other Special Functions',
|
| 1970 |
+
'sub-menu' : [
|
| 1971 |
+
{
|
| 1972 |
+
'name' : 'agm: Arithmetic, Geometric Mean',
|
| 1973 |
+
'snippet' : [
|
| 1974 |
+
'special.agm(a, b)',
|
| 1975 |
+
],
|
| 1976 |
+
},
|
| 1977 |
+
|
| 1978 |
+
{
|
| 1979 |
+
'name' : 'bernoulli: Return an array of the Bernoulli numbers $B_0$, ..., $B_n$ (inclusive)',
|
| 1980 |
+
'snippet' : [
|
| 1981 |
+
'special.bernoulli(n)',
|
| 1982 |
+
],
|
| 1983 |
+
},
|
| 1984 |
+
|
| 1985 |
+
{
|
| 1986 |
+
'name' : 'binom: Binomial coefficient',
|
| 1987 |
+
'snippet' : [
|
| 1988 |
+
'special.binom(n, k)',
|
| 1989 |
+
],
|
| 1990 |
+
},
|
| 1991 |
+
|
| 1992 |
+
{
|
| 1993 |
+
'name' : 'diric: Returns the periodic sinc function, also called the Dirichlet function',
|
| 1994 |
+
'snippet' : [
|
| 1995 |
+
'special.diric(x, n)',
|
| 1996 |
+
],
|
| 1997 |
+
},
|
| 1998 |
+
|
| 1999 |
+
{
|
| 2000 |
+
'name' : 'euler: Return an array of the Euler numbers $E_0$, ..., $E_n$ (inclusive)',
|
| 2001 |
+
'snippet' : [
|
| 2002 |
+
'special.euler(n)',
|
| 2003 |
+
],
|
| 2004 |
+
},
|
| 2005 |
+
|
| 2006 |
+
{
|
| 2007 |
+
'name' : 'expn: Exponential integral $E_n$',
|
| 2008 |
+
'snippet' : [
|
| 2009 |
+
'special.expn(n, x)',
|
| 2010 |
+
],
|
| 2011 |
+
},
|
| 2012 |
+
|
| 2013 |
+
{
|
| 2014 |
+
'name' : 'exp1: Exponential integral $E_1$ of complex argument $z$',
|
| 2015 |
+
'snippet' : [
|
| 2016 |
+
'special.exp1(z)',
|
| 2017 |
+
],
|
| 2018 |
+
},
|
| 2019 |
+
|
| 2020 |
+
{
|
| 2021 |
+
'name' : 'expi: Exponential integral $\\mathrm{Ei}$',
|
| 2022 |
+
'snippet' : [
|
| 2023 |
+
'special.expi(x)',
|
| 2024 |
+
],
|
| 2025 |
+
},
|
| 2026 |
+
|
| 2027 |
+
{
|
| 2028 |
+
'name' : 'factorial: The factorial function, $n! = \\Gamma(n+1)$',
|
| 2029 |
+
'snippet' : [
|
| 2030 |
+
'special.factorial(n, exact=False)',
|
| 2031 |
+
],
|
| 2032 |
+
},
|
| 2033 |
+
|
| 2034 |
+
{
|
| 2035 |
+
'name' : 'factorial2: Double factorial $n!!$',
|
| 2036 |
+
'snippet' : [
|
| 2037 |
+
'special.factorial2(n, exact=False)',
|
| 2038 |
+
],
|
| 2039 |
+
},
|
| 2040 |
+
|
| 2041 |
+
{
|
| 2042 |
+
'name' : 'factorialk: $n(!!...!)$ = multifactorial of order $k$',
|
| 2043 |
+
'snippet' : [
|
| 2044 |
+
'special.factorialk(n, k, exact=False)',
|
| 2045 |
+
],
|
| 2046 |
+
},
|
| 2047 |
+
|
| 2048 |
+
{
|
| 2049 |
+
'name' : 'shichi: Hyperbolic sine and cosine integrals',
|
| 2050 |
+
'snippet' : [
|
| 2051 |
+
'special.shichi(x)',
|
| 2052 |
+
],
|
| 2053 |
+
},
|
| 2054 |
+
|
| 2055 |
+
{
|
| 2056 |
+
'name' : 'sici: Sine and cosine integrals',
|
| 2057 |
+
'snippet' : [
|
| 2058 |
+
'special.sici(x)',
|
| 2059 |
+
],
|
| 2060 |
+
},
|
| 2061 |
+
|
| 2062 |
+
{
|
| 2063 |
+
'name' : 'spence: Dilogarithm integral',
|
| 2064 |
+
'snippet' : [
|
| 2065 |
+
'special.spence(x)',
|
| 2066 |
+
],
|
| 2067 |
+
},
|
| 2068 |
+
|
| 2069 |
+
{
|
| 2070 |
+
'name' : 'lambertw: Lambert $W$ function [R497]',
|
| 2071 |
+
'snippet' : [
|
| 2072 |
+
'special.lambertw(z[, k, tol])',
|
| 2073 |
+
],
|
| 2074 |
+
},
|
| 2075 |
+
|
| 2076 |
+
{
|
| 2077 |
+
'name' : 'zeta: Hurwitz $\\zeta$ function',
|
| 2078 |
+
'snippet' : [
|
| 2079 |
+
'special.zeta(x, q)',
|
| 2080 |
+
],
|
| 2081 |
+
},
|
| 2082 |
+
|
| 2083 |
+
{
|
| 2084 |
+
'name' : 'zetac: Riemann $\\zeta$ function minus 1',
|
| 2085 |
+
'snippet' : [
|
| 2086 |
+
'special.zetac(x)',
|
| 2087 |
+
],
|
| 2088 |
+
},
|
| 2089 |
+
|
| 2090 |
+
],
|
| 2091 |
+
},
|
| 2092 |
+
|
| 2093 |
+
{
|
| 2094 |
+
'name' : 'Convenience Functions',
|
| 2095 |
+
'sub-menu' : [
|
| 2096 |
+
|
| 2097 |
+
{
|
| 2098 |
+
'name' : 'cbrt: $\\sqrt[3]{x}$',
|
| 2099 |
+
'snippet' : [
|
| 2100 |
+
'special.cbrt(x)',
|
| 2101 |
+
],
|
| 2102 |
+
},
|
| 2103 |
+
|
| 2104 |
+
{
|
| 2105 |
+
'name' : 'exp10: $10^x$',
|
| 2106 |
+
'snippet' : [
|
| 2107 |
+
'special.exp10(x)',
|
| 2108 |
+
],
|
| 2109 |
+
},
|
| 2110 |
+
|
| 2111 |
+
{
|
| 2112 |
+
'name' : 'exp2: $2^x$',
|
| 2113 |
+
'snippet' : [
|
| 2114 |
+
'special.exp2(x)',
|
| 2115 |
+
],
|
| 2116 |
+
},
|
| 2117 |
+
|
| 2118 |
+
{
|
| 2119 |
+
'name' : 'radian: Convert from degrees to radians',
|
| 2120 |
+
'snippet' : [
|
| 2121 |
+
'special.radian(d, m, s)',
|
| 2122 |
+
],
|
| 2123 |
+
},
|
| 2124 |
+
|
| 2125 |
+
{
|
| 2126 |
+
'name' : 'cosdg: Cosine of the angle given in degrees',
|
| 2127 |
+
'snippet' : [
|
| 2128 |
+
'special.cosdg(x)',
|
| 2129 |
+
],
|
| 2130 |
+
},
|
| 2131 |
+
|
| 2132 |
+
{
|
| 2133 |
+
'name' : 'sindg: Sine of angle given in degrees',
|
| 2134 |
+
'snippet' : [
|
| 2135 |
+
'special.sindg(x)',
|
| 2136 |
+
],
|
| 2137 |
+
},
|
| 2138 |
+
|
| 2139 |
+
{
|
| 2140 |
+
'name' : 'tandg: Tangent of angle given in degrees',
|
| 2141 |
+
'snippet' : [
|
| 2142 |
+
'special.tandg(x)',
|
| 2143 |
+
],
|
| 2144 |
+
},
|
| 2145 |
+
|
| 2146 |
+
{
|
| 2147 |
+
'name' : 'cotdg: Cotangent of the angle given in degrees',
|
| 2148 |
+
'snippet' : [
|
| 2149 |
+
'special.cotdg(x)',
|
| 2150 |
+
],
|
| 2151 |
+
},
|
| 2152 |
+
|
| 2153 |
+
{
|
| 2154 |
+
'name' : 'log1p: Calculates $\\log(1+x)$ for use when $x$ is near zero',
|
| 2155 |
+
'snippet' : [
|
| 2156 |
+
'special.log1p(x)',
|
| 2157 |
+
],
|
| 2158 |
+
},
|
| 2159 |
+
|
| 2160 |
+
{
|
| 2161 |
+
'name' : 'expm1: $\\exp(x) - 1$ for use when $x$ is near zero',
|
| 2162 |
+
'snippet' : [
|
| 2163 |
+
'special.expm1(x)',
|
| 2164 |
+
],
|
| 2165 |
+
},
|
| 2166 |
+
|
| 2167 |
+
{
|
| 2168 |
+
'name' : 'cosm1: $\\cos(x) - 1$ for use when $x$ is near zero',
|
| 2169 |
+
'snippet' : [
|
| 2170 |
+
'special.cosm1(x)',
|
| 2171 |
+
],
|
| 2172 |
+
},
|
| 2173 |
+
|
| 2174 |
+
{
|
| 2175 |
+
'name' : 'round: Round to nearest integer',
|
| 2176 |
+
'snippet' : [
|
| 2177 |
+
'special.round(x)',
|
| 2178 |
+
],
|
| 2179 |
+
},
|
| 2180 |
+
|
| 2181 |
+
{
|
| 2182 |
+
'name' : 'xlogy: Compute $x\\, \\log(y)$ so that the result is 0 if $x$ = 0',
|
| 2183 |
+
'snippet' : [
|
| 2184 |
+
'special.xlogy(x, y)',
|
| 2185 |
+
],
|
| 2186 |
+
},
|
| 2187 |
+
|
| 2188 |
+
{
|
| 2189 |
+
'name' : 'xlog1py: Compute $x\\, \\log(1+y)$ so that the result is 0 if $x$ = 0',
|
| 2190 |
+
'snippet' : [
|
| 2191 |
+
'special.xlog1py(x, y)',
|
| 2192 |
+
],
|
| 2193 |
+
},
|
| 2194 |
+
],
|
| 2195 |
+
},
|
| 2196 |
+
|
| 2197 |
+
],
|
| 2198 |
+
});
|
.local/share/jupyter/nbextensions/snippets_menu/snippets_submenus_python/sympy_assumptions.js
ADDED
|
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
define({
|
| 2 |
+
'name' : 'List of assumptions',
|
| 3 |
+
'sub-menu' : [
|
| 4 |
+
{
|
| 5 |
+
'name' : 'Bounded',
|
| 6 |
+
'snippet' : ['Q.bounded(x)',],
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
'name' : 'Commutative',
|
| 10 |
+
'snippet' : ['Q.commutative(x)',],
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
'name' : 'Complex',
|
| 14 |
+
'snippet' : ['Q.complex(x)',],
|
| 15 |
+
},
|
| 16 |
+
{
|
| 17 |
+
'name' : 'Imaginary',
|
| 18 |
+
'snippet' : ['Q.imaginary(x)',],
|
| 19 |
+
},
|
| 20 |
+
{
|
| 21 |
+
'name' : 'Real',
|
| 22 |
+
'snippet' : ['Q.real(x)',],
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
'name' : 'Extended real',
|
| 26 |
+
'snippet' : ['Q.extended_real(x)',],
|
| 27 |
+
},
|
| 28 |
+
{
|
| 29 |
+
'name' : 'Integer',
|
| 30 |
+
'snippet' : ['Q.integer(x)',],
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
'name' : 'Odd',
|
| 34 |
+
'snippet' : ['Q.odd(x)',],
|
| 35 |
+
},
|
| 36 |
+
{
|
| 37 |
+
'name' : 'Even',
|
| 38 |
+
'snippet' : ['Q.even(x)',],
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
'name' : 'Prime',
|
| 42 |
+
'snippet' : ['Q.prime(x)',],
|
| 43 |
+
},
|
| 44 |
+
{
|
| 45 |
+
'name' : 'Composite',
|
| 46 |
+
'snippet' : ['Q.composite(x)',],
|
| 47 |
+
},
|
| 48 |
+
{
|
| 49 |
+
'name' : 'Zero',
|
| 50 |
+
'snippet' : ['Q.zero(x)',],
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
'name' : 'Nonzero',
|
| 54 |
+
'snippet' : ['Q.nonzero(x)',],
|
| 55 |
+
},
|
| 56 |
+
{
|
| 57 |
+
'name' : 'Rational',
|
| 58 |
+
'snippet' : ['Q.rational(x)',],
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
'name' : 'Algebraic',
|
| 62 |
+
'snippet' : ['Q.algebraic(x)',],
|
| 63 |
+
},
|
| 64 |
+
{
|
| 65 |
+
'name' : 'Transcendental',
|
| 66 |
+
'snippet' : ['Q.transcendental(x)',],
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
'name' : 'Irrational',
|
| 70 |
+
'snippet' : ['Q.irrational(x)',],
|
| 71 |
+
},
|
| 72 |
+
{
|
| 73 |
+
'name' : 'Finite',
|
| 74 |
+
'snippet' : ['Q.finite(x)',],
|
| 75 |
+
},
|
| 76 |
+
{
|
| 77 |
+
'name' : 'Infinite',
|
| 78 |
+
'snippet' : ['Q.infinite(x)',],
|
| 79 |
+
},
|
| 80 |
+
{
|
| 81 |
+
'name' : 'Infinitesimal',
|
| 82 |
+
'snippet' : ['Q.infinitesimal(x)',],
|
| 83 |
+
},
|
| 84 |
+
{
|
| 85 |
+
'name' : 'Negative',
|
| 86 |
+
'snippet' : ['Q.negative(x)',],
|
| 87 |
+
},
|
| 88 |
+
{
|
| 89 |
+
'name' : 'Nonnegative',
|
| 90 |
+
'snippet' : ['Q.nonnegative(x)',],
|
| 91 |
+
},
|
| 92 |
+
{
|
| 93 |
+
'name' : 'Positive',
|
| 94 |
+
'snippet' : ['Q.positive(x)',],
|
| 95 |
+
},
|
| 96 |
+
{
|
| 97 |
+
'name' : 'Nonpositive',
|
| 98 |
+
'snippet' : ['Q.nonpositive(x)',],
|
| 99 |
+
},
|
| 100 |
+
{
|
| 101 |
+
'name' : 'Hermitian',
|
| 102 |
+
'snippet' : ['Q.hermitian(x)',],
|
| 103 |
+
},
|
| 104 |
+
{
|
| 105 |
+
'name' : 'Antihermitian',
|
| 106 |
+
'snippet' : ['Q.antihermitian(x)',],
|
| 107 |
+
},
|
| 108 |
+
],
|
| 109 |
+
});
|