Add files using upload-large-folder tool
Browse files
.triton/dump/99f0a4c15ca0aab38ccdae6c765f7333/triton_.ttir
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
module {
|
2 |
+
tt.func public @triton__0d1d2d3d4d5d6de7de(%arg0: !tt.ptr<f32, 1> {tt.divisibility = 16 : i32}, %arg1: !tt.ptr<bf16, 1> {tt.divisibility = 16 : i32}, %arg2: !tt.ptr<bf16, 1> {tt.divisibility = 16 : i32}, %arg3: !tt.ptr<bf16, 1> {tt.divisibility = 16 : i32}, %arg4: !tt.ptr<f32, 1> {tt.divisibility = 16 : i32}, %arg5: !tt.ptr<bf16, 1> {tt.divisibility = 16 : i32}, %arg6: i32 {tt.divisibility = 16 : i32, tt.max_divisibility = 16 : i32}, %arg7: i32 {tt.divisibility = 16 : i32, tt.max_divisibility = 16 : i32}) attributes {noinline = false} {
|
3 |
+
%c256_i32 = arith.constant 256 : i32
|
4 |
+
%cst = arith.constant dense<0.000000e+00> : tensor<256xbf16>
|
5 |
+
%cst_0 = arith.constant 0.000000e+00 : f32
|
6 |
+
%cst_1 = arith.constant 2.560000e+02 : f32
|
7 |
+
%cst_2 = arith.constant 9.99999974E-6 : f32
|
8 |
+
%cst_3 = arith.constant dense<0.000000e+00> : tensor<256xf32>
|
9 |
+
%cst_4 = arith.constant dense<256> : tensor<256xi32>
|
10 |
+
%0 = tt.get_program_id x : i32
|
11 |
+
%1 = tt.make_range {end = 256 : i32, start = 0 : i32} : tensor<256xi32>
|
12 |
+
%2 = arith.cmpi slt, %1, %cst_4 : tensor<256xi32>
|
13 |
+
%3 = arith.muli %0, %c256_i32 : i32
|
14 |
+
%4 = tt.splat %3 : (i32) -> tensor<256xi32>
|
15 |
+
%5 = arith.addi %1, %4 : tensor<256xi32>
|
16 |
+
%6 = tt.splat %arg0 : (!tt.ptr<f32, 1>) -> tensor<256x!tt.ptr<f32, 1>>
|
17 |
+
%7 = tt.addptr %6, %5 : tensor<256x!tt.ptr<f32, 1>>, tensor<256xi32>
|
18 |
+
%8 = tt.load %7, %2, %cst_3 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<256xf32>
|
19 |
+
%9 = tt.splat %arg1 : (!tt.ptr<bf16, 1>) -> tensor<256x!tt.ptr<bf16, 1>>
|
20 |
+
%10 = tt.addptr %9, %5 : tensor<256x!tt.ptr<bf16, 1>>, tensor<256xi32>
|
21 |
+
%11 = tt.load %10, %2, %cst {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<256xbf16>
|
22 |
+
%12 = arith.extf %11 : tensor<256xbf16> to tensor<256xf32>
|
23 |
+
%13 = tt.splat %arg2 : (!tt.ptr<bf16, 1>) -> tensor<256x!tt.ptr<bf16, 1>>
|
24 |
+
%14 = tt.addptr %13, %5 : tensor<256x!tt.ptr<bf16, 1>>, tensor<256xi32>
|
25 |
+
%15 = tt.load %14, %2, %cst {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<256xbf16>
|
26 |
+
%16 = arith.extf %15 : tensor<256xbf16> to tensor<256xf32>
|
27 |
+
%17 = tt.splat %arg3 : (!tt.ptr<bf16, 1>) -> tensor<256x!tt.ptr<bf16, 1>>
|
28 |
+
%18 = tt.addptr %17, %5 : tensor<256x!tt.ptr<bf16, 1>>, tensor<256xi32>
|
29 |
+
%19 = tt.load %18, %2, %cst {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<256xbf16>
|
30 |
+
%20 = arith.extf %19 : tensor<256xbf16> to tensor<256xf32>
|
31 |
+
%21 = tt.splat %arg4 : (!tt.ptr<f32, 1>) -> tensor<256x!tt.ptr<f32, 1>>
|
32 |
+
%22 = tt.addptr %21, %1 : tensor<256x!tt.ptr<f32, 1>>, tensor<256xi32>
|
33 |
+
%23 = tt.load %22, %2, %cst_3 {cache = 1 : i32, evict = 3 : i32, isVolatile = false} : tensor<256xf32>
|
34 |
+
%24 = arith.addf %8, %12 : tensor<256xf32>
|
35 |
+
%25 = arith.addf %24, %16 : tensor<256xf32>
|
36 |
+
%26 = arith.addf %25, %20 : tensor<256xf32>
|
37 |
+
%27 = arith.select %2, %26, %cst_3 : tensor<256xi1>, tensor<256xf32>
|
38 |
+
%28 = "tt.reduce"(%27) <{axis = 0 : i32}> ({
|
39 |
+
^bb0(%arg8: f32, %arg9: f32):
|
40 |
+
%46 = arith.addf %arg8, %arg9 : f32
|
41 |
+
tt.reduce.return %46 : f32
|
42 |
+
}) : (tensor<256xf32>) -> f32
|
43 |
+
%29 = arith.addf %28, %cst_0 : f32
|
44 |
+
%30 = arith.divf %29, %cst_1 : f32
|
45 |
+
%31 = tt.splat %30 : (f32) -> tensor<256xf32>
|
46 |
+
%32 = arith.subf %26, %31 : tensor<256xf32>
|
47 |
+
%33 = arith.mulf %32, %32 : tensor<256xf32>
|
48 |
+
%34 = arith.select %2, %33, %cst_3 : tensor<256xi1>, tensor<256xf32>
|
49 |
+
%35 = "tt.reduce"(%34) <{axis = 0 : i32}> ({
|
50 |
+
^bb0(%arg8: f32, %arg9: f32):
|
51 |
+
%46 = arith.addf %arg8, %arg9 : f32
|
52 |
+
tt.reduce.return %46 : f32
|
53 |
+
}) : (tensor<256xf32>) -> f32
|
54 |
+
%36 = arith.addf %35, %cst_0 : f32
|
55 |
+
%37 = arith.divf %36, %cst_1 : f32
|
56 |
+
%38 = arith.addf %37, %cst_2 : f32
|
57 |
+
%39 = tt.extern_elementwise %38 {libname = "libdevice", libpath = "/usr/local/lib/python3.10/dist-packages/triton/language/../third_party/cuda/lib/libdevice.10.bc", pure = true, symbol = "__nv_rsqrtf"} : (f32) -> f32
|
58 |
+
%40 = tt.splat %39 : (f32) -> tensor<256xf32>
|
59 |
+
%41 = arith.mulf %32, %40 : tensor<256xf32>
|
60 |
+
%42 = arith.mulf %41, %23 : tensor<256xf32>
|
61 |
+
%43 = tt.splat %arg5 : (!tt.ptr<bf16, 1>) -> tensor<256x!tt.ptr<bf16, 1>>
|
62 |
+
%44 = tt.addptr %43, %5 : tensor<256x!tt.ptr<bf16, 1>>, tensor<256xi32>
|
63 |
+
%45 = arith.truncf %42 : tensor<256xf32> to tensor<256xbf16>
|
64 |
+
tt.store %44, %45, %2 {cache = 1 : i32, evict = 1 : i32} : tensor<256xbf16>
|
65 |
+
tt.return
|
66 |
+
}
|
67 |
+
}
|