0-hero commited on
Commit
4f38035
·
verified ·
1 Parent(s): 75eb174

Add files using upload-large-folder tool

Browse files
.triton/dump/99f0a4c15ca0aab38ccdae6c765f7333/triton_.ttir ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ module {
2
+ tt.func public @triton__0d1d2d3d4d5d6de7de(%arg0: !tt.ptr<f32, 1> {tt.divisibility = 16 : i32}, %arg1: !tt.ptr<bf16, 1> {tt.divisibility = 16 : i32}, %arg2: !tt.ptr<bf16, 1> {tt.divisibility = 16 : i32}, %arg3: !tt.ptr<bf16, 1> {tt.divisibility = 16 : i32}, %arg4: !tt.ptr<f32, 1> {tt.divisibility = 16 : i32}, %arg5: !tt.ptr<bf16, 1> {tt.divisibility = 16 : i32}, %arg6: i32 {tt.divisibility = 16 : i32, tt.max_divisibility = 16 : i32}, %arg7: i32 {tt.divisibility = 16 : i32, tt.max_divisibility = 16 : i32}) attributes {noinline = false} {
3
+ %c256_i32 = arith.constant 256 : i32
4
+ %cst = arith.constant dense<0.000000e+00> : tensor<256xbf16>
5
+ %cst_0 = arith.constant 0.000000e+00 : f32
6
+ %cst_1 = arith.constant 2.560000e+02 : f32
7
+ %cst_2 = arith.constant 9.99999974E-6 : f32
8
+ %cst_3 = arith.constant dense<0.000000e+00> : tensor<256xf32>
9
+ %cst_4 = arith.constant dense<256> : tensor<256xi32>
10
+ %0 = tt.get_program_id x : i32
11
+ %1 = tt.make_range {end = 256 : i32, start = 0 : i32} : tensor<256xi32>
12
+ %2 = arith.cmpi slt, %1, %cst_4 : tensor<256xi32>
13
+ %3 = arith.muli %0, %c256_i32 : i32
14
+ %4 = tt.splat %3 : (i32) -> tensor<256xi32>
15
+ %5 = arith.addi %1, %4 : tensor<256xi32>
16
+ %6 = tt.splat %arg0 : (!tt.ptr<f32, 1>) -> tensor<256x!tt.ptr<f32, 1>>
17
+ %7 = tt.addptr %6, %5 : tensor<256x!tt.ptr<f32, 1>>, tensor<256xi32>
18
+ %8 = tt.load %7, %2, %cst_3 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<256xf32>
19
+ %9 = tt.splat %arg1 : (!tt.ptr<bf16, 1>) -> tensor<256x!tt.ptr<bf16, 1>>
20
+ %10 = tt.addptr %9, %5 : tensor<256x!tt.ptr<bf16, 1>>, tensor<256xi32>
21
+ %11 = tt.load %10, %2, %cst {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<256xbf16>
22
+ %12 = arith.extf %11 : tensor<256xbf16> to tensor<256xf32>
23
+ %13 = tt.splat %arg2 : (!tt.ptr<bf16, 1>) -> tensor<256x!tt.ptr<bf16, 1>>
24
+ %14 = tt.addptr %13, %5 : tensor<256x!tt.ptr<bf16, 1>>, tensor<256xi32>
25
+ %15 = tt.load %14, %2, %cst {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<256xbf16>
26
+ %16 = arith.extf %15 : tensor<256xbf16> to tensor<256xf32>
27
+ %17 = tt.splat %arg3 : (!tt.ptr<bf16, 1>) -> tensor<256x!tt.ptr<bf16, 1>>
28
+ %18 = tt.addptr %17, %5 : tensor<256x!tt.ptr<bf16, 1>>, tensor<256xi32>
29
+ %19 = tt.load %18, %2, %cst {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<256xbf16>
30
+ %20 = arith.extf %19 : tensor<256xbf16> to tensor<256xf32>
31
+ %21 = tt.splat %arg4 : (!tt.ptr<f32, 1>) -> tensor<256x!tt.ptr<f32, 1>>
32
+ %22 = tt.addptr %21, %1 : tensor<256x!tt.ptr<f32, 1>>, tensor<256xi32>
33
+ %23 = tt.load %22, %2, %cst_3 {cache = 1 : i32, evict = 3 : i32, isVolatile = false} : tensor<256xf32>
34
+ %24 = arith.addf %8, %12 : tensor<256xf32>
35
+ %25 = arith.addf %24, %16 : tensor<256xf32>
36
+ %26 = arith.addf %25, %20 : tensor<256xf32>
37
+ %27 = arith.select %2, %26, %cst_3 : tensor<256xi1>, tensor<256xf32>
38
+ %28 = "tt.reduce"(%27) <{axis = 0 : i32}> ({
39
+ ^bb0(%arg8: f32, %arg9: f32):
40
+ %46 = arith.addf %arg8, %arg9 : f32
41
+ tt.reduce.return %46 : f32
42
+ }) : (tensor<256xf32>) -> f32
43
+ %29 = arith.addf %28, %cst_0 : f32
44
+ %30 = arith.divf %29, %cst_1 : f32
45
+ %31 = tt.splat %30 : (f32) -> tensor<256xf32>
46
+ %32 = arith.subf %26, %31 : tensor<256xf32>
47
+ %33 = arith.mulf %32, %32 : tensor<256xf32>
48
+ %34 = arith.select %2, %33, %cst_3 : tensor<256xi1>, tensor<256xf32>
49
+ %35 = "tt.reduce"(%34) <{axis = 0 : i32}> ({
50
+ ^bb0(%arg8: f32, %arg9: f32):
51
+ %46 = arith.addf %arg8, %arg9 : f32
52
+ tt.reduce.return %46 : f32
53
+ }) : (tensor<256xf32>) -> f32
54
+ %36 = arith.addf %35, %cst_0 : f32
55
+ %37 = arith.divf %36, %cst_1 : f32
56
+ %38 = arith.addf %37, %cst_2 : f32
57
+ %39 = tt.extern_elementwise %38 {libname = "libdevice", libpath = "/usr/local/lib/python3.10/dist-packages/triton/language/../third_party/cuda/lib/libdevice.10.bc", pure = true, symbol = "__nv_rsqrtf"} : (f32) -> f32
58
+ %40 = tt.splat %39 : (f32) -> tensor<256xf32>
59
+ %41 = arith.mulf %32, %40 : tensor<256xf32>
60
+ %42 = arith.mulf %41, %23 : tensor<256xf32>
61
+ %43 = tt.splat %arg5 : (!tt.ptr<bf16, 1>) -> tensor<256x!tt.ptr<bf16, 1>>
62
+ %44 = tt.addptr %43, %5 : tensor<256x!tt.ptr<bf16, 1>>, tensor<256xi32>
63
+ %45 = arith.truncf %42 : tensor<256xf32> to tensor<256xbf16>
64
+ tt.store %44, %45, %2 {cache = 1 : i32, evict = 1 : i32} : tensor<256xbf16>
65
+ tt.return
66
+ }
67
+ }